
Code Evolution Graphs: Understanding Large Language Model
Driven Design of Algorithms

Niki van Stein
n.van.stein@liacs.leidenuniv.nl

LIACS, Leiden University
Leiden, Netherlands

Anna V. Kononova
a.kononova@liacs.leidenuniv.nl

LIACS, Leiden University
Leiden, Netherlands

Lars Kotthoff
larsko@uwyo.edu

University of Wyoming
Laramie, United States

Thomas Bäck
t.h.w.baeck@liacs.leidenuniv.nl

LIACS, Leiden University
Leiden, Netherlands

ABSTRACT
Large Language Models (LLMs) have demonstrated great promise
in generating code, especially when used inside an evolutionary
computation framework to iteratively optimize the generated algo-
rithms. However, in some cases they fail to generate competitive
algorithms or the code optimization stalls, and we are left with
no recourse because of a lack of understanding of the generation
process and generated codes. We present a novel approach to miti-
gate this problem by enabling users to analyze the generated codes
inside the evolutionary process and how they evolve over repeated
prompting of the LLM. We show results for three benchmark prob-
lem classes and demonstrate novel insights. In particular, LLMs tend
to generate more complex code with repeated prompting, but addi-
tional complexity can hurt algorithmic performance in some cases.
Different LLMs have different coding “styles” and generated code
tends to be dissimilar to other LLMs. These two findings suggest
that using different LLMs inside the code evolution frameworks
might produce higher performing code than using only one LLM.

CCS CONCEPTS
• Theory of computation → Design and analysis of algo-
rithms; Design and analysis of algorithms; Bio-inspired opti-
mization; • Human-centered computing → Visualization tech-
niques; • Computing methodologies → Heuristic function
construction.

1 INTRODUCTION
The automated generation and optimization of algorithms has be-
come a critical area of research in evolutionary computation and
artificial intelligence. Traditional approaches to designing optimiza-
tion algorithms often rely on expert knowledge, which can be time-
consuming and prone to human bias. Recently, Large Language
Models (LLMs) such as GPT-4 [12] have demonstrated significant
potential for automating this process by synthesizing and refin-
ing algorithms based on natural language prompts and feedback
[4, 14, 18, 24].

One of the key challenges in automated algorithm design with
LLMs is the limited direct control we have over the algorithm
generation, mutation and crossover. This leads to a limited under-
standing of how the evolutionary search through code space is

performing and how we can improve these algorithms in a system-
atic way. To address this, we propose the concept of Code Evolution
Graphs (CEGs), which integrate static code analysis, graph-based
representations, and complexity metrics to provide insights into
optimization dynamics and the resulting algorithmic behaviors of
code generation and optimization frameworks. By utilizing Abstract
Syntax Trees (ASTs) as a basis, CEGs enable the extraction of static
code features, offering a comprehensive toolbox for understanding
the evolution of algorithms over successive generations.

In this paper, we focus on analyzing the structural and complexity
characteristics of algorithms generated by the Large Language
Model Evolutionary Algorithm (LLaMEA) [18], LLaMEA with in-
the-loop hyper-parameter optimization (LLaMEA-HPO) [20] and
Evolution of Heuristics (EoH) [4], across three benchmark tasks:
Black-Box Optimization (BBO), Online Bin Packing (OBP), and
the Traveling Salesperson Problem (TSP). We aim to answer key
questions about the nature of the algorithms produced, such as
their structural modularity, logical complexity, and scalability and
how these features evolve during the (meta)optimization runs.

The main contributions of this work are as follows:

• We introduce Code Evolution Graphs, a novel methodology
that combines graph-based representations and complexity
analysis to evaluate the evolution of code generated by
LLMs and evolutionary frameworks.

• We systematically extract and analyze 20 structural and
complexity features from ASTs, including cyclomatic com-
plexity, token counts, clustering coefficients, and entropy
measures, to uncover patterns in algorithmic design.

• We provide a comparative analysis of LLaMEA and EoH
across diverse optimization tasks, revealing the strengths
and limitations of LLM-driven algorithm generation.

• We visualize the evolution of code with PCA and t-SNE to
uncover high-level trends and structural shifts that provide
novel insights into the optimization process.

Recent advancements in LLM-based search frameworks, such as
Funsearch [14], LLaMEA [18] and EoH [4], have demonstrated the
feasibility of using natural language processing models to generate
novel algorithms whose performance rivals that of state-of-the-art
heuristic methods. Funsearch was among the first methods that
showed that with evolutionary search techniques LLMs could gen-
erate novel and well performing heuristics; however, Funsearch

ar
X

iv
:2

50
3.

16
66

8v
1

 [
cs

.N
E

]
 2

0
M

ar
 2

02
5

https://orcid.org/0000-0002-0013-7969
https://orcid.org/0000-0002-4138-7024
https://orcid.org/0000-0003-4635-6873
https://orcid.org/0000-0001-6768-1478

N. van Stein et al.

required a few million evaluations to do so at that time. LLaMEA
leverages an iterative process of algorithm generation, evaluation,
and refinement, guided by fitness feedback and error correction,
to evolve complex optimization strategies, originally proposed to
solve black-box optimization tasks [18]. In contrast, EoH focuses
on the evolution of smaller heuristic functions through mutation
and crossover operations [4], originally aimed at solving combina-
torial problems. Both approaches have shown promising results
on benchmark tasks, but we lack a detailed understanding of the
structural and functional properties of the generated code and the
evolution thereof.

The introduction of Code Evolution Graphs addresses this gap
by providing a unified framework for analyzing a wide range of
attributes of the codes generated over the optimization run. By lever-
aging AST-based feature extraction and graph-theoretic metrics, we
aim to gain deeper insights into the design principles underlying
LLM-generated algorithms and their impact on performance.

2 RELATEDWORK
The automated generation and optimization of algorithms has been
a topic of discussion in the optimization community since at least
the early 2010s, when [6] introduced the concept of Programming by
Optimization. To avoid premature commitment to design choices
in the algorithm implementations, developers were encouraged
instead to maintain a selection of alternatives, forming a parame-
terized combinatorial algorithm design space that can be searched
by a meta-optimizer for better empirical performance over repre-
sentative problems. The concept has been subsequently practically
extended to allow continuous/mixed design spaces [17] and in-
troduced to numerical black-box optimization context as modular
algorithms [23], where a meta-optimizer searches over algorithms
with a defined structure and a known range of options for all mo-
dules. These developments have subsequently been recognized as
part of the broader task of automated algorithm design (AAD) for
optimisation [22]. With the advent of LLM-based approaches, we
argue here for the extension of AAD to include the automated gen-
eration and optimization of algorithms without prior specification
of algorithm structure. Thus, in the remainder of this paper, we
focus exclusively on AAD for the generation and optimization of
meta-heuristic for optimization tasks, referring to them as AAD.

Analyzing the behavior of optimization algorithms has been
a central theme in black-box optimization research, with various
approaches proposed to gain insights into algorithm performance,
search dynamics, and problem landscapes. While this paper repre-
sents the first effort to analyze code evolution in the AAD domain,
we draw upon related work in algorithm trajectory analysis, land-
scape modeling, and static code analysis to ground our approach.

2.1 Analysis of Optimization Algorithm
Behavior

Search Trajectory Networks (STNs) have been employed to visual-
ize and understand the movement of algorithms in the search space
[10]. STNs represent the trajectory of an algorithm as a directed
graph, where nodes correspond to search locations and edges de-
note transitions between them. This approach has been particularly
useful for identifying common pathways and termination points in

the search process. However, STNs typically do not capture tem-
poral information, such as how long an algorithm remains in a
particular region. Attractor networks, introduced in [16], address
this limitation by focusing on regions of stagnation, or “attractors”
where an algorithm stalls for a predefined number of evaluations.
These attractor networks provide a coarser-grained view of algo-
rithm dynamics, revealing insights into stalling behavior that are
not evident in traditional STNs.

Another form of attractor analysis for continuous optimization,
is by using local optima networks (LONs) [11]. LONs represent
the connectivity and distribution of local optima in a search space,
providing insights into the basins of attraction. However, LONs
often rely on local search methods for their construction, limiting
their generalization to other algorithms.

Exploratory Landscape Analysis (ELA) provides another lens
for understanding optimization problems by characterizing the
fitness landscape using features such as ruggedness, separability,
and global structure [8]. These features are essential for predicting
algorithm performance and tailoring strategies to specific problem
characteristics. While ELA focuses on the BBO problem landscape,
our method focuses on the AAD problem landscape, and more
specifically the structural properties of the algorithms found during
the search, extracting features from the code to understand how
they evolve and adapt to various tasks.

While the above methods are applied to gain insights into algo-
rithm-problem interactions, they cannot be (straightforwardly) ap-
plied to AAD tasks. The main challenge is that “individuals” in the
AAD task are algorithms, with no clearly defined representation
that can be used to compute similarities. While some work repre-
sents algorithms as vectors based on pre-defined modules of the
algorithms [21], this approach is not possible if the code is generated
and does not adhere to any pre-defined modular structure.

2.2 Static Code Analysis
Static code analysis, a well-established technique in software engi-
neering, has been instrumental in assessing the complexity, main-
tainability, and quality of source code [9]. Metrics such as cyclo-
matic complexity and code token analysis provide quantitative
measures of code structure. When we speak of ‘tokens’ in this
work, we mean lexical tokens of the code, indicating total code size.

The work by Pulatov et al. [13] introduces an approach to im-
proving algorithm selection by analyzing structural features of
algorithms, moving beyond traditional “black-box” methods that
rely solely on performance observations. By using static code anal-
ysis and AST features such as cyclomatic complexity and clustering
coefficients, the authors demonstrate that incorporating algorithm
features into the selection process can lead to performance improve-
ments. This perspective aligns with our goal of understanding the
evolution of LLM-generated algorithms by analyzing their struc-
tural and complexity characteristics, as captured by AST-based
metrics. Inspired by this, our work applies static code analysis to
evaluate the structural and complexity features of algorithms gener-
ated in the AAD domain to provide a comprehensive understanding
of code evolution.

Visualization techniques for changes in code over time were
proposed in the past to mainly visualize changes in repositories

Code Evolution Graphs

or software libraries. In [15] for example, the authors introduce
the Code Flows methodology, a visualization technique for under-
standing structural changes in source code across multiple versions.
Instead of visualizing a complete repository of code based on a Git
or change log, we propose a visualization and analysis methodology
for evolving code (single-file algorithms or even single functions)
generated by LLMs in an AAD setting.

Despite these advancements, no prior work has systematically
analyzed the structural and complexity characteristics of algorithms
generated in the AAD domain. This gap motivates our study, which
combines techniques from STNs, attractor analysis, and static code
analysis to offer a novel perspective on algorithm design and evo-
lution. By extracting and analyzing a diverse set of features from
LLM-generated code, we aim to uncover patterns and principles
that underlie successful algorithm generation, aiming to contribute
to a deeper understanding of the AAD landscape.

3 METHODOLOGY
In this section, we introduce the methodological framework for
analyzing the evolution of code generated during the optimization
process using Large Language Models and evolutionary frame-
works. Our approach focuses on extracting meaningful insights
into the properties of the generated algorithms that affect perfor-
mance. To achieve this, we leverage Abstract Syntax Trees as a
foundational representation of the code, from which we derive a
comprehensive set of metrics and features. These include structural
properties, complexity measures, and graph-based representations
that collectively characterize the behavior of the algorithms.

We begin by describing the Abstract Syntax Tree Features (Sec-
tion 3.1), which capture the syntactic structure of the code and
enable the computation of graph-theoretic metrics. Next, we intro-
duce the Code Complexity Features (Section 3.2) we use, focusing
on cyclomatic complexity, token counts, and parameter counts to
quantify the logical and structural complexity of the generated
algorithms. Finally, we formally define the concept of Code Evolu-
tion Graphs (Section 3.3), a novel graph-based representation that
models the lineage and transformations of code over successive
generations in the optimization process.

3.1 Abstract Syntax Tree Features
Abstract Syntax Trees serve as a foundational representation of
source code structure, enabling the extraction of syntactic features
for code analysis. ASTs can be seen as directed acyclic graphs
(DAGs), where nodes represent syntactic elements (e.g., loops, con-
ditionals), and edges capture their hierarchical relationships. This
facilitates the computation of graph-theoretic metrics and other
structural properties.

To characterize ASTs, we extract the following features:
Structural Properties Metrics such as node count, edge count,

and depth distribution quantify code complexity.
Graph Centrality Eigenvector centrality highlights critical

nodes influencing graph connectivity.
Clustering Coefficients Measures of node clustering reveal

the modularity of the code structure.
Transitivity and Assortativity These metrics reflect code

cohesiveness and structural correlations.

Entropy Measures Degree and depth entropy quantify the
diversity and balance of the AST structure.

This comprehensive set of metrics enables a comparative analysis
of algorithmic structures and diversity and serves as a basis for
visualizing code evolution.

3.2 Code Complexity Features
Understanding the complexity of generated code is essential for
evaluating its scalability, maintainability, and computational effi-
ciency. To this end, we leverage a range of static analysis metrics
to quantify the complexity of code structures produced during the
optimization process. These metrics are particularly important for
assessing the trade-offs between algorithmic sophistication and
runtime performance.

The following key complexity features are extracted:
Cyclomatic Complexity This metric quantifies the number

of linearly independent paths through the code, providing
a measure of its logical complexity [3].

Token Count The total count of lexical tokens indicates the
overall size of the code and its potential for human read-
ability or interpretability.

Parameter Count The number of parameters in functions
and methods reflects the modularity and configurability of
the code.

Function-Level Aggregates Per-function averages and to-
tals for cyclomatic complexity, token count, and parameter
count are computed to understand variations within the
codebase.

Depth and Nesting Metrics The maximum and average lev-
els of nesting provide insights into structural depth and
potential readability challenges.

These complexitymeasures are computedwith the Lizard [7] tool
for static code analysis and further enriched by custom AST-based
feature extraction. The total resulting code features we extract and
use are listed in Table 1.

3.3 Code Evolution Graphs
We define a Code Evolution Graph (CEG) as a directed graph 𝐺 =

(𝑉 , 𝐸), where:
• 𝑉 is the set of nodes, each corresponding to an algorithmic

instance represented by a vector of extracted features from
its AST and associated metadata. The nodes 𝑣𝑖 ∈ 𝑉 are
defined by:

𝑣𝑖 = (𝑓𝑖 , x𝑖 ,𝑚𝑖)

where:
– 𝑓𝑖 ∈ [0, 1] is the normalized performance of the algo-

rithm on the respective benchmark;
– x𝑖 ∈ R𝑑 is the 𝑑-dimensional vector of standardized

AST features, such as cyclomatic complexity, token
count, parameter count, and other extracted metrics;

– 𝑚𝑖 is the metadata associated with the algorithm, in-
cluding identifiers (e.g., id and name), evaluation in-
dex within the code optimization framework (such as
LLaMEA) run, and parent IDs.

N. van Stein et al.

Table 1: Features Extracted for Code Analysis

Feature Name Explanation

Node Count Total number of nodes in the AST, reflecting the size of the code structure.
Edge Count Total number of edges in the AST, representing the connections between syntactic elements.

Edge Density Ratio of edges to nodes in the AST, providing a measure of graph connectivity.
Min.|Max.|Mean|Var. Degree Statistical features about the degrees of the nodes in the AST.

Degree Entropy Entropy of node degrees, capturing variability in connectivity.
Assortativity Degree assortativity of the AST, measuring structural correlations between connected nodes.

Min.|Max.|Mean. Depth Features regarding the depth of the AST, indicating the level of nested constructs.
Depth Entropy Entropy of node depths, quantifying structural balance in the AST.

Min.|Max.|Mean|Var. Clustering Clustering coefficient features of the AST nodes, indicating the modularity of code.
Transitivity Global measure of clustering in the AST, representing code cohesion.

Diameter Longest shortest path in the AST, representing the maximum distance between two nodes.
Radius Shortest maximum distance from any node to all other nodes, indicating graph compactness.

Mean Eccentricity Mean eccentricity of nodes (eccentricity is the longest distance from a node to any other node).
Average Shortest Path Mean shortest path length in the AST, representing structural compactness.

Cyclomatic Complexity Logical total and mean code complexity, representing the number of independent execution paths.
Token Count Total and average number of tokens in the code, reflecting its size and verbosity.

Parameter Count Number of parameters in functions and average number per function, reflecting configurability.

• 𝐸 ⊆ 𝑉 × 𝑉 is the set of directed edges, where an edge
𝑒 = (𝑣𝑖 , 𝑣 𝑗) exists if algorithm 𝑣 𝑗 was generated as a de-
scendant of 𝑣𝑖 during an optimization process. Parent-child
relationships are determined from the evolutionary lineage.

Visualization: To analyze the evolution of algorithms over
the AAD evaluations, CEGs are projected into lower-dimensional
spaces using dimensionality reduction techniques, in this case us-
ing Principal Component Analysis (PCA) [1] and t-distributed Sto-
chastic Neighbor Embedding (t-SNE) [2]. Nodes are plotted in the
reduced space, with node sizes proportional to their frequency as
parents in the evolutionary lineage.

Purpose: Code Evolution Graphs provide a structured represen-
tation of algorithm evolution, enabling the analysis of structural
changes in the code, fitness improvements, and lineage over suc-
cessive generations.

4 ANALYSIS OF DIFFERENT CODE
EVOLUTION STRATEGIES

To evaluate the effectiveness of the Code Evolution Graphs and
gain insights into algorithm design and evolution, we consider
three benchmark tasks: Black-Box Optimization (BBO), Online Bin
Packing (OBP), and the Traveling Salesperson Problem (TSP). Each
benchmark represents a distinct optimization challenge, enabling a
comprehensive analysis of the generated algorithms’ adaptability,
scalability, and structural complexity in the AAD setting.

For the visualizations in this work, we split the AST and com-
plexity features and use the AST features as input for the PCA
transformation. We choose to look at complexity separately as we
saw a strong linear correlation of the different complexity features
with each other. To analyse the complexity of the generated algo-
rithms, we mainly look at code token counts, as the cyclomatic
complexity and number of function parameters are highly influ-
enced by the way the evolutionary frameworks are organized. For

example, for the LLaMEA-HPO algorithm, the prompt asks explic-
itly to add any tunable parameter to the function prototype, causing
a much higher number of parameters by construction.

4.1 Black-Box Optimization
The Black-Box Optimization benchmark suite consists of a set of
continuous, noiseless functions that challenge the optimization ca-
pabilities of metaheuristic algorithms. The objective is to minimize
a given function 𝑓 : R𝑑 → R, where no information about the
function’s structure or derivatives are available. Instead, algorithms
must iteratively query the function and refine their search based
solely on previously evaluated solutions.

In the AAD task, the goal is to automatically generate and opti-
mize metaheuristics capable of solving a diverse set of BBO func-
tions. The algorithms evolved by frameworks such as LLaMEA
and EoH are evaluated on their ability to balance exploration and
exploitation across the black-box optimization landscape by evalu-
ating them on diverse optimization problems. More specifically, the
generated algorithms are evaluated on 24 noiseless functions in a
5𝑑 search space using the BBOB suite [5] and using 3 instances and
3 independent runs for each of the benchmark functions (typical
usage of the BBOB suite). Key challenges include navigating mul-
timodal, separable, and highly-conditioned landscapes to achieve
competitive performance within the evaluation budget (of 10 000
function evaluations). For additional details on the exact setup of
this task, we refer the reader to [18].

Figure 1 shows the t-SNE projection of the extracted 26 code fea-
tures for different LLaMEA configurations and Random Search (RS)
runs. Each marker represents a single optimization algorithm, with
different shapes denoting independent LLaMEA runs and marker
sizes corresponding to fitness values (larger markers indicate higher
fitness). The visualization reveals several insights into the behavior
of the optimization process.

Code Evolution Graphs

60 40 20 0 20 40
t-SNE 1

40

20

0

20

40

60

t-S
NE

 2

t-SNE Projection

Figure 1: t-SNE visualisation of the 26 code features for dif-
ferent LLaMEA configurations, 5 independent runs per con-
figuration and 5 Random Search runs. The color denotes the
method, different shapes denote different independent runs
and different sizes denote different normalized fitness (big-
ger is better).

First, the runs are mostly non-overlapping, indicating distinct
optimization trajectories for each configuration. Notably, only the
RS experiments show some degree of overlap, suggesting that RS
lacks the structured exploration seen in the LLaMEA-based meth-
ods. Second, the solutions generated by different LLMs occupy
distinct regions of the feature space, highlighting unique coding
“fingerprints” characteristics of each LLM. This suggests that each
LLM employs unique generation and refinement strategies, pro-
ducing algorithmic solutions with different structural properties.
Third, the clustering of points within each optimization run suggest
an “evolutionary” trend in the feature space. This pattern implies
that the evolutionary loop and in-context learning mechanisms
in LLaMEA effectively guide the search towards better solutions.
Finally, the diversity in coding fingerprints across LLMs supports
the argument for leveraging multiple LLMs rather than relying on
a single model. By utilizing multiple LLMs, one can exploit their
complementary strengths, increasing the likelihood of generating
diverse and high-quality solutions.

Figure 2 presents the Code Evolution Graphs for the BBO bench-
mark. The left side visualizes the CEGs using the first principal
component on the 22 AST graph code features (without complexity
features) as the 𝑦-axis, while the right side depicts the total token
count on the 𝑦-axis to show an indicator of total code-complexity.

The first PCA component coefficients can be found in our Zenodo
repository [19], indicating which features explain most variability
in the data. Each row corresponds to a different AAD algorithm
(from top to bottom; LLaMEA using GPT-4-Turbo, GPT-4o, GPT3.5
and Random Search using GPT-4-Turbo). Each column shows inde-
pendent optimization runs. From these visualizations, we observe
distinct structural patterns in the evolution of algorithms. LLaMEA
uses by default a 1 + 1 strategy with one parent generating one
offspring algorithm. This results in a CEG where each node (algo-
rithm) is connected to exactly one parent node. The graphs show
how many mutations it took on a parent algorithm to finally im-
prove the fitness. In the Random Search algorithm there is no notion
of parents and offspring, and so they are not connected by edges.

4.2 Online Bin Packing
The Online Bin Packing problem is a classic combinatorial opti-
mization challenge where items of varying sizes arrive sequentially
and must be placed into a finite set of bins with fixed capacity.
The objective is to minimize the total number of bins used while
adhering to capacity constraints. OBP requires algorithms to make
decisions in real time, without knowledge of future items.

The AAD task for OBP involves generating heuristics that can
efficiently determine bin placement strategies for incoming items.
These heuristics are evaluated on their ability to generalize across
multiple problem instances, where item sequences vary. The evolu-
tion process must identify effective scoring functions or decision
rules that minimize bin usage while maintaining computational
efficiency. For additional details on the exact setup of this task, we
refer the reader to [4].

The Code Evolution Graphs for OBP are shown in Figure 3.
Similar to the BBO visualizations, PCA projections and code token
count analyses are used to capture the structural evolution of the
algorithms. The CEGs illustrate how LLaMEA-HPO and EoH adapt
their strategies over successive generations. Evolution of Heuristics
uses by default a 4 + 20 strategy with a population size of 4 parents,
and each parent undergoing 5 different mutations to end up with 20
offspring. This shows in the CEG as a muchmore densely connected
graph. We can also observe that EoH generates mutations that
are relatively close to each other and there is no clearly visible
exploration in the PCA feature space compared to LLaMEA-HPO.
Note that hyper-parameter optimization in LLaMEA-HPO only
affects the fitness of the algorithms and not their features.

4.3 Traveling Salesperson Problems
The Traveling Salesperson Problem is a well-known NP-hard prob-
lem in which the objective is to determine the shortest possible
route that visits a set of cities exactly once and returns to the start-
ing point. Given a complete weighted graph, the task is to minimize
the total length of the tour.

In the AAD setting, the challenge lies in generating heuristics
that guide a local search algorithm, Guided Local Search (GLS), to
explore the solution space effectively. The heuristics evolve strate-
gies for dynamically penalizing frequently used edges, thereby
encouraging exploration of alternative paths and improving con-
vergence to near-optimal solutions. TSP serves as a benchmark for
assessing the scalability and adaptability of generated algorithms

N. van Stein et al.

Figure 2: Code Evolution Graphs for LLaMEA using different LLMs and a baseline Random Search on BBO. On the left side are
CEGs using the first PCA component of the AST graph metrics on the 𝑦-axis, with the number denoting the fraction of the
total variance accounted for by this dimension. On the right side are CEGs using the total token count on the 𝑦-axis. Each row
represents a different algorithm configuration (LLM) and each column is one independent run (3 runs in total).

across problem sizes and graph structures. For additional details on
the exact setup of this task, we refer the reader to [4].

Figure 4 shows the Code Evolution Graphs for the TSP bench-
mark. Also in this case the EoH approach uses a population size
of 4 with 20 offspring being generated each iteration. The CEGs
from LLaMEA-HPO show that a near-optimal solution was found
very early in the search process (in the first 20 evaluations) and
that the search afterwards did not improve anymore. For EoH the
search is less successful in finding a near-optimal solution very fast.
We observe a clear trend of code complexity increasing with the
number of evaluations.

4.4 Analysis of Code Features
To quantify how features affect the fitness of the generated algo-
rithms, we compute the Spearman correlation between extracted
code features and fitness values across all benchmark tasks and
LLMs. The result is shown in Figure 5. In the BBO benchmark
(top four rows), mean complexity, total parameter count, and mean
parameter count emerge as the most influential, suggesting that
algorithm modularity, size and logical complexity are key drivers of

performance of the generated algorithms in continuous optimiza-
tion tasks. The positive correlation for all those features suggests
that more complex algorithms perform better. For the OBP bench-
mark (rows five and six), the structural properties max and mean
depth play the most prominent roles, with a positive correlation
suggesting again that more complex code tends to perform better.
Finally, in the TSP benchmark (last two rows), max degree and
mean complexity have a substantial impact. However, in contrast
to the other two benchmarks, the correlation is negative, show-
ing that less complex solutions for this benchmark provide better
performance than more complex solutions.

The important code features and their impact vary across bench-
marks and across LLMs. There is no single set of features that
always affects performance in the same way. This makes sense, as
we are solving very different benchmarks with starting codes with
different performances. Again we observe that different LLMs have
different “fingerprints” and tend to modify code in different ways.
For example, the fitness of code for BBO LLaMEA 1 + 1 GPT-4-
Turbo is relatively strongly positively correlated with mean depth,
while swapping GPT-4-Turbo for GPT-4o changes this to a rela-
tively strong negative correlation. For TSP EoH, no feature shows

Code Evolution Graphs

Figure 3: Code Evolution Graphs for LLaMEA-HPO and EoH on the Online Bin Packing Problems. On the left side are CEGs
using the first PCA component of the AST graph metrics on the 𝑦-axis, with the number denoting the fraction of the total
variance accounted for by this dimension. On the right side are CEGs using the total token count on the 𝑦-axis. The top row
shows different runs of LLaMEA-HPO and the bottom row shows different runs for EoH.

Figure 4: Code Evolution Graphs for LLaMEA-HPO and EoH on the Traveling Salesperson Problems. On the left side are CEGs
using the first PCA component of the AST graph metrics on the 𝑦-axis, with the number denoting the fraction of the total
variance accounted for by this dimension. On the right side are CEGs using the total token count on the 𝑦-axis. The top row
shows different runs of LLaMEA-HPO and the bottom row shows different runs for EoH.

a strong correlation with the fitness of the evolved algorithm, sug-
gesting that changing the code does not affect performance much
– the LLM is unable to find changes that improve performance. In
contrast, for BBO LLaMEA 1 + 1 GPT-3.5 and GPT-4-Turbo in par-
ticular, many features have relatively strong positive or negative
correlations with performance, suggesting that changes being made
to the code have a large impact on performance.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we introduced Code Evolution Graphs as a novel
methodology for analyzing and visualizing the structural evolution
of algorithms generated by LLMs in evolutionary frameworks. By
extracting and analyzing a comprehensive set of structural and
complexity features from Abstract Syntax Trees, we were able to

uncover insights into the design principles underlying successful
algorithms for different tasks.

Our results demonstrated several findings:

• Diversity in Solutions: CEGs reveal that the generated
algorithms span a vast and non-overlapping feature space,
emphasizing the diversity of code-space explored during the
optimization process. This highlights the ability of frame-
works such as LLaMEA and EoH to explore novel algorith-
mic structures.

• Trends in Complexity: We observed a consistent up-
ward trend in code complexity (in particular, code token
count) over the evolutionary process for LLaMEA-based
frameworks, especially using the GPT-4o model. This sug-
gests that the LLM-driven mutation strategies, particularly

N. van Stein et al.

As
so

rta
tiv

ity

Av
er

ag
e

Ec
ce

nt
ric

ity

Av
er

ag
e

Sh
or

te
st

 P
at

h

De
gr

ee
 E

nt
ro

py

De
gr

ee
 V

ar
ia

nc
e

De
pt

h
En

tro
py

Di
am

et
er

Ed
ge

 D
en

sit
y

Ed
ge

s

M
ax

 D
eg

re
e

M
ax

 D
ep

th

M
ea

n
De

gr
ee

M
ea

n
De

pt
h

No
de

s

Ra
di

us

M
ea

n
Co

m
pl

ex
ity

M
ea

n
Pa

ra
m

et
er

 C
ou

nt

M
ea

n
To

ke
n

Co
un

t

To
ta

l C
om

pl
ex

ity

To
ta

l P
ar

am
et

er
 C

ou
nt

To
ta

l T
ok

en
 C

ou
nt

BBO - GPT4-RS

BBO - LLaMEA-1+1 GPT3.5

BBO - LLaMEA-1+1 GPT4

BBO - LLaMEA-1+1 GPT4o

OBP - EoH

OBP - LLaMEA-HPO

TSP - EoH

TSP - LLaMEA-HPO

Pr
ob

le
m

-M
et

ho
d

Co
m

bi
na

tio
n

0.02 0.01 0.09 0.08 0.11 0.08 -0.01 -0.09 0.06 0.07 0.05 0.09 0.15 0.06 0.00 0.26 0.15 0.20 0.10 -0.08 0.04

0.03 0.35 0.34 0.50 -0.09 0.44 0.34 -0.45 0.52 0.11 0.34 0.45 0.25 0.52 0.35 -0.32 -0.02 -0.25 0.35 0.57 0.53

-0.18 -0.19 -0.26 -0.32 0.36 -0.30 -0.23 0.29 -0.32 0.13 0.28 -0.29 0.33 -0.32 -0.18 0.33 0.40 0.28 -0.28 -0.33 -0.33

-0.06 0.26 -0.00 0.19 0.14 0.19 0.24 -0.17 0.20 0.34 0.06 0.17 -0.34 0.20 0.31 -0.29 0.21 -0.26 0.00 0.36 0.19

0.08 0.17 0.16 0.15 0.06 0.16 0.16 -0.15 0.13 0.01 0.22 0.15 0.18 0.13 0.17 -0.04 0.13 -0.04 0.13

0.06 0.26 0.57 0.04 -0.28 0.01 0.22 -0.11 -0.05 -0.30 0.36 0.11 0.76 -0.05 0.23 -0.28 0.08 -0.02 -0.28 0.08 -0.02

0.08 0.01 0.00 0.04 0.04 0.04 0.02 -0.04 0.04 0.03 0.04 0.04 0.01 0.04 0.03 -0.03 0.02 0.04 -0.03 -0.02 0.04

0.00 -0.24 -0.14 -0.21 -0.28 -0.23 -0.24 0.18 -0.25 -0.32 -0.22 -0.18 0.10 -0.25 -0.26 -0.31 -0.28 -0.25 -0.28 -0.19 -0.17
0.4

0.2

0.0

0.2

0.4

0.6

Co
rre

la
tio

n

Figure 5: Spearman correlation index for each code feature (column) with the performance of the algorithms (fitness) for all
benchmarks and methods (rows).

within the 1 + 1 evolutionary paradigm, tend to produce
increasingly complex algorithms over time.

• Task-Specific Feature Importance: Our analysis of the
correlation of feature values with fitness showed that the
importance of individual features varies across benchmarks.
For the Black-Box Optimization and Online Bin Packing
tasks, higher complexity correlated positively with fitness.
In contrast, for the Traveling Salesperson Problem, simpler
solutions with lower complexity performed better, suggest-
ing that more complex algorithms are not always better.

• Framework Comparisons: LLaMEA-HPO, with its in-the-
loop hyper-parameter optimization, exhibited smoother
evolutionary trajectories, compared to EoH’s reliance on
structural diversity through mutations.

These insights demonstrate the utility of Code Evolution Graphs
as a tool for linking the structure and complexity of algorithms to
their fitness performance. By providing a systematic approach to
analyzing code evolution, CEGs enable a better understanding of
the strengths and limitations of LLM-based frameworks in the AAD
domain, and actionable insights for improving AAD with LLMs.

While this work provides a foundation of analyzing LLM AAD
frameworks, several avenues for future research remain:

• Code Features: One of the main limitations of the rep-
resentation by AST features is that a badly configured al-
gorithm would have exactly the same AST features as a
hyper-parameter optimized algorithm. Research into other
(dynamic) features would strengthen the methodology.

• Complexity Control: Techniques to limit or regulate code
complexity during the evolutionary process could improve
the efficiency and interpretability of generated algorithms.

• Diversity Management: Strategies for controlling diver-
sity in the population, such as diversity-aware mutation
operators or clustering methods, could further enhance
exploration behavior.

• Informed LLMMutations: Incorporating feedback mech-
anisms to guide LLM-driven mutations towards more mean-
ingful structural changes.

This work bridges the gap between algorithmic evolution and
code structure analysis, offering a framework for visualizing and an-
alyzing LLM-driven algorithm design tasks. All code and additional
results are available in our Zenodo repository [19].

ACKNOWLEDGMENTS
This work has benefitted fromDagstuhl Seminar 24282, “Automated
Machine Learning for Computational Mechanics”. We thank Grace
Abawe for writing the original AST analysis code.

REFERENCES
[1] Rasmus Bro and Age K Smilde. 2014. Principal component analysis. Analytical

methods 6, 9 (2014), 2812–2831.
[2] Matthew C Cieslak, Ann M Castelfranco, Vittoria Roncalli, Petra H Lenz, and

Daniel K Hartline. 2020. t-Distributed Stochastic Neighbor Embedding (t-SNE):
A tool for eco-physiological transcriptomic analysis. Marine genomics 51 (2020),
100723.

[3] Christof Ebert, James Cain, Giuliano Antoniol, Steve Counsell, and Phillip La-
plante. 2016. Cyclomatic complexity. IEEE Software 33, 6 (2016), 27–29.

[4] Liu Fei, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao
Lu, andQingfu Zhang. 2024. Evolution of Heuristics: Towards Efficient Automatic
Algorithm Design Using Large Language Model. In International Conference on
Machine Learning (ICML). https://arxiv.org/abs/2401.02051

[5] Nikolaus Hansen, Steffen Finck, Raymond Ros, and Anne Auger. 2009. Real-
Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Defini-
tions. Research Report RR-6829. INRIA. https://hal.inria.fr/inria-00362633

https://arxiv.org/abs/2401.02051
https://hal.inria.fr/inria-00362633

Code Evolution Graphs

[6] Holger H. Hoos. 2012. Programming by Optimization. Communications of the
Association for Computing Machinery (CACM) 55, 2 (Feb. 2012), 70–80. https:
//doi.org/10.1145/2076450.2076469

[7] Stewart Martin-Haugh, Stefan Kluth, Rolf Seuster, Scott Snyder, Emil Obreshkov,
Shaun Roe, Peter Sherwood, and Graeme A Stewart. 2017. C++ software quality
in the ATLAS experiment: tools and experience. In Journal of Physics: Conference
Series, Vol. 898. IOP Publishing, 072011.

[8] Olaf Mersmann, Bernd Bischl, Heike Trautmann, Mike Preuss, Claus Weihs, and
Günter Rudolph. 2011. Exploratory Landscape Analysis. In Proceedings of the
13th Annual Conference on Genetic and Evolutionary Computation (GECCO ’11).
Association for Computing Machinery, New York, NY, USA, 829–836. https:
//doi.org/10.1145/2001576.2001690

[9] Alberto S Nuñez-Varela, Héctor G Pérez-Gonzalez, Francisco E Martínez-Perez,
and Carlos Soubervielle-Montalvo. 2017. Source code metrics: A systematic
mapping study. Journal of Systems and Software 128 (2017), 164–197.

[10] Gabriela Ochoa, Katherine M. Malan, and Christian Blum. 2021. Search trajectory
networks: A tool for analysing and visualising the behaviour of metaheuristics.
Applied Soft Computing 109 (2021), 107492. https://doi.org/10.1016/j.asoc.2021.
107492

[11] Gabriela Ochoa, Sébastien Verel, Fabio Daolio, and Marco Tomassini. 2014. Local
optima networks: A new model of combinatorial fitness landscapes. Recent
advances in the theory and application of fitness landscapes (2014), 233–262.

[12] OpenAI. 2023. ChatGPT-4o. https://platform.openai.com/docs/models/gpt-4o.
[13] Damir Pulatov, Marie Anastacio, Lars Kotthoff, and Holger Hoos. 2022. Opening

the black box: Automated software analysis for algorithm selection. In Interna-
tional Conference on Automated Machine Learning. PMLR, 6–1.

[14] Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov,
Matej Balog, M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S
Ellenberg, Pengming Wang, Omar Fawzi, Pushmeet Kohli, and Alhussein Fawzi.
2024. Mathematical discoveries from program search with large language models.
Nature 625 (01 2024), 468–475. Issue 7995.

[15] Alexandru Telea and David Auber. 2008. Code flows: Visualizing structural
evolution of source code. In Computer Graphics Forum, Vol. 27. Wiley Online

Library, 831–838.
[16] Sarah L. Thomson, Quentin Renau, Diederick Vermetten, Emma Hart, Niki van

Stein, and Anna V. Kononova. 2024. Stalling in Space: Attractor Analysis for any
Algorithm. arXiv:2412.15848 [cs.NE] https://arxiv.org/abs/2412.15848

[17] Sander van Rijn, Hao Wang, Matthijs van Leeuwen, and Thomas Bäck. 2016.
Evolving the structure of Evolution Strategies. In 2016 IEEE Symposium Series on
Computational Intelligence (SSCI). 1–8. https://doi.org/10.1109/SSCI.2016.7850138

[18] Niki van Stein and Thomas Bäck. 2024. LLaMEA: A Large Language
Model Evolutionary Algorithm for Automatically Generating Metaheuristics.
arXiv:2405.20132 [cs.NE] https://arxiv.org/abs/2405.20132

[19] Niki van Stein, Anna V. Kononova, Lars Kotthoff, and Thomas Bäck. 2025. Figures
and code for Code Evolution Graphs. https://doi.org/10.5281/zenodo.14770672

[20] Niki van Stein, Diederick Vermetten, and Thomas Bäck. 2024. In-the-loop
Hyper-Parameter Optimization for LLM-Based Automated Design of Heuristics.
arXiv:2410.16309 [cs.NE] https://arxiv.org/abs/2410.16309

[21] Niki van Stein, Diederick Vermetten, Anna V. Kononova, and Thomas Bäck.
2024. Explainable Benchmarking for Iterative Optimization Heuristics. (2024).
arXiv:2401.17842 [cs.NE] arXiv:2401.17842.

[22] Diederick Vermetten, Martin S. Krejca, Marius Lindauer, Manuel López-Ibáñez,
and Katherine M. Malan. 2024. Synergizing Theory and Practice of Automated
Algorithm Design for Optimization (Dagstuhl Seminar 23332). Dagstuhl Reports
13, 8 (2024), 46–70. https://doi.org/10.4230/DagRep.13.8.46

[23] Diederick Vermetten, Sander van Rijn, Thomas Bäck, and Carola Doerr. 2019.
Online selection of CMA-ES variants. In Proceedings of the Genetic and Evo-
lutionary Computation Conference (Prague, Czech Republic) (GECCO ’19). As-
sociation for Computing Machinery, New York, NY, USA, 951–959. https:
//doi.org/10.1145/3321707.3321803

[24] Rui Zhang, Fei Liu, Xi Lin, Zhenkun Wang, Zhichao Lu, and Qingfu Zhang. 2024.
Understanding the Importance of Evolutionary Search in Automated Heuristic
Design with Large Language Models. In International Conference on Parallel
Problem Solving from Nature. Springer, 185–202.

https://doi.org/10.1145/2076450.2076469
https://doi.org/10.1145/2076450.2076469
https://doi.org/10.1145/2001576.2001690
https://doi.org/10.1145/2001576.2001690
https://doi.org/10.1016/j.asoc.2021.107492
https://doi.org/10.1016/j.asoc.2021.107492
https://platform.openai.com/docs/models/gpt-4o
https://arxiv.org/abs/2412.15848
https://arxiv.org/abs/2412.15848
https://doi.org/10.1109/SSCI.2016.7850138
https://arxiv.org/abs/2405.20132
https://arxiv.org/abs/2405.20132
https://doi.org/10.5281/zenodo.14770672
https://arxiv.org/abs/2410.16309
https://arxiv.org/abs/2410.16309
https://arxiv.org/abs/2401.17842
https://doi.org/10.4230/DagRep.13.8.46
https://doi.org/10.1145/3321707.3321803
https://doi.org/10.1145/3321707.3321803

	Abstract
	1 Introduction
	2 Related Work
	2.1 Analysis of Optimization Algorithm Behavior
	2.2 Static Code Analysis

	3 Methodology
	3.1 Abstract Syntax Tree Features
	3.2 Code Complexity Features
	3.3 Code Evolution Graphs

	4 Analysis of Different Code Evolution Strategies
	4.1 Black-Box Optimization
	4.2 Online Bin Packing
	4.3 Traveling Salesperson Problems
	4.4 Analysis of Code Features

	5 Conclusions and Future Work
	Acknowledgments
	References

