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Abstract. The International Competition on Computational Models of Argumentation (ICCMA) focuses on reasoning tasks
in abstract argumentation frameworks. Submitted solvers are tested on a selected collection of benchmark instances, including
artificially generated argumentation frameworks and some frameworks formalizing real-world problems. This paper presents
the novelties introduced in the organization of the Third (2019) and Fourth (2021) editions of the competition. In particular,
we proposed new tracks to competitors, one dedicated to dynamic solvers (i.e., solvers that incrementally compute solutions
of frameworks obtained by incrementally modifying original ones) in ICCMA’19 and one dedicated to approximate algorithms
in ICCMA’21. From the analysis of the results, we noticed that i) dynamic recomputation of solutions leads to significant
performance improvements, ii) approximation provides much faster results with satisfactory accuracy, and iii) classical solvers
improved with respect to previous editions, thus revealing advancement in state of the art.
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1. Introduction

Computational argumentation is a field of Artificial Intelligence (AI) that provides formalisms for rea-
soning with conflicting information. It finds applications in many different areas, ranging from health-
care [58] to explainable AI [80]. An Abstract Argumentation Framework (AF for short) [30] is one of the
formalisms used in computational argumentation and can be represented as a simple pair F = (A, →),
composed of a set of arguments and an attack relationship between them. Such a simple representa-
tion can be straightforwardly represented as a directed graph with nodes (arguments) and directed edges
(attacks). We refer to [29] for a broader discussion on formal argumentation.

The International Competition on Computational Models of Argumentation (ICCMA)1 aims to nurture

*Corresponding author. E-mail: carlo.taticchi@unipg.it.
1ICCMA Website: http://argumentationcompetition.org.
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research and development of implementations for computational models of argumentation. The objec-
tives of the competition are to provide a forum for the empirical comparison of solvers, to highlight
challenges to the community, to propose new directions for research, and to provide a core of common
benchmark instances and a representation formalism that can aid in the comparison and evaluation of
solvers. Similar competitions are organized in many other areas of AI. The MiniZinc Challenge2 is an
annual competition of Constraint Programming solvers on various benchmarks (since 2008). The annual
SAT Competition3 evaluates solvers for Boolean Satisfiability (SAT) problems (since 2002). The Interna-
tional Planning Competition4 is a biennial challenge whose aim is to evaluate state-of-the-art planning
systems empirically. As organizers of the third and fourth editions of the competition (ICCMA’19 and
ICCMA’21), we proposed several novelties with respect to the two previous editions, which are described
in [75] (ICCMA’15) and [42] (ICCMA’17), respectively.

With each reiteration of the competition, the organizers added new tracks that followed the latest de-
velopments in the field of computational argumentation. ICCMA’17 proposed a special track (called
Dung’s Triathlon) in which the solvers were required to deal with three consecutive enumeration prob-
lems, where the solution computed in the previous step could be used. The 2023 edition also features
three special tracks: an approximate Track, a dynamic Track, and an ABA Track.5 The 2019 compe-
tition introduced a new track to evaluate the effectiveness of solvers in recomputing extensions with
minor adjustments to a starting AF. In this track, specifically designed for dynamic solvers and ap-
proaches [3,13], participants were allowed to use previous results to solve the problem more efficiently
in a slightly modified framework rather than starting from scratch with each change. Typically, an AF
represents a temporary “screenshot” of a debate, and new arguments and attacks can be added/retracted
to account for new knowledge during the evolution of a discussion. If we consider disputes among users
of online social networks [49], arguments/attacks are continuously added/retracted by users to express
their point of view in response to the last utterance. The ICCMA’19 track challenged solvers to handle
a single added or retracted attack per modification. This aimed to encourage the creation of specialized
solvers for dynamic scenarios. This approach often leads to better performance. The second novelty in
ICCMA’19 concerned the use of Docker.6 Docker is a platform-as-a-service software that uses OS-level
virtualization to deliver software in packages called containers. The software that hosts the containers
is called “Docker Engine”, which runs on Windows, Linux, and MacOS. In this case, our purpose is to
encourage the packaging of solvers such that they can easily be run everywhere to ease the evaluation
phase and allow for the recomputation of competition results. A container comes with all the needed soft-
ware and libraries. An overview of these novelties has been described in [16] before ICCMA’19, while a
preliminary summary of participants and benchmarks has been discussed in [17] after the competition.

In organizing ICCMA’21, we intended to keep the main novelties brought by ICCMA’19 and
also planned the introduction of a new track dedicated to structured argumentation (more precisely,
assumption-based argumentation [24,76]). Unfortunately, technical issues with the platform used for
running the competition prevented us from using Docker, and a lack of participants caused us to cancel
the tracks dedicated to dynamic and structured argumentation. On the contrary, the community showed
interest in approximate algorithms, leading us to introduce a track dedicated to solvers using such al-

2MiniZinc Challenge: https://www.minizinc.org/challenge.html.
3SAT Competition: http://www.satcompetition.org.
4Planning competitions: https://tinyurl.com/uezhalg.
5ICCMA’23 Website: https://iccma2023.github.io/.
6Docker.com: https://www.docker.com.

https://www.minizinc.org/challenge.html
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gorithms. A preliminary description of the ICCMA’21 organization can be found in [54], while a short
description of participants and results is available in [55].

The rest of this paper is structured as follows. In Section 2, we describe the necessary background
about Abstract Argumentation, related work on dynamic frameworks and motivations for including them
in the competition, and finally, Docker containers. Section 3 lists and describes the computational prob-
lems we included in ICCMA’19 and ICCMA’21, while Section 4 surveys the input and output format the
solvers needed to adhere to (dynamic frameworks extend classical input formats). Section 5 describes
the solvers that participated in the competition, how benchmarks were assembled, how we ranked the
solvers according to the obtained results, and the adopted reference solver. In each section, we emphasize
the differences between ICCMA’19 and ICCMA’21. Section 6 reports a detailed analysis of the results,
including a comparison with the best ICCMA’17 solvers and between dynamic and non-dynamic solvers
in ICCMA’19, to evaluate their speed-up. A similar comparison is made for ICCMA’19 solvers on IC-
CMA’21 benchmarks. Section 9 introduces lessons learned from organizing the competition, mainly
concerning the virtualization of solvers and output parsing. Finally, Section 10 wraps up the paper with
conclusions and final thoughts about future work.

2. Background and dynamic frameworks

We divide this section into two parts: fundamental notions about Abstract Argumentation are reported
in Section 2.1, while Section 2.2 summarises the literature about dynamic AFs and related approaches.

2.1. Abstract argumentation

An Abstract Argumentation Framework (AF, for short) [30] is a tuple F = (A, →) where A is a set
of arguments and → is a relation →⊆ A × A. For two arguments a, b ∈ A, the relation a → b means
that argument a attacks argument b. An argument a ∈ A is defended by S ⊆ A (in F) if for each b ∈ A
such that b → a there is some c ∈ S such that c → b. A set E ⊆ A is conflict-free (in F) if and only if
there are no a, b ∈ E with a → b. E is admissible (in F) if and only if it is conflict-free and each a ∈ E

is defended by E. Finally, the range of E in F , i.e., E⊕, collects the same E and the set of arguments
attacked by E: E⊕ = E ∪ {a ∈ A|∃b ∈ E : b → a}. A directed graph can straightforwardly represent
an AF: an example with five arguments is given in Fig. 1 (e.g., both arguments a and c attack b, but not
vice-versa).

The collective acceptability of arguments depends on the definition of different semantics. Four of
them are proposed by Dung in his seminal paper [30], namely the complete (CO), preferred (PR), stable
(ST), and grounded (GR) semantics. In addition, other semantics have been defined in the literature that
we also use for the competition: in particular, the semi-stable (SST) [25], stage (STG) [77], and ideal
(ID) [31]. Semantics determine sets of jointly acceptable arguments, called extensions, by mapping each
F = (A, →) to a set σ(F) ⊆ 2A, where 2A is the power set of A, and σ parametrically stands for
any of the considered semantics. The extensions under complete, preferred, stable, semi-stable, stage,
grounded, and ideal semantics are defined as follows. Given F = (A, →) and a set E ⊆ A,

Fig. 1. An example of an AF represented as a directed graph.
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• E ∈ CO(F) iff E is admissible in F and if a ∈ A is defended by E in F then a ∈ E,
• E ∈ PR(F) iff E ∈ CO(F) and there is no E′ ∈ CO(F) such that E′ ⊃ E,
• E ∈ SST(F) iff E ∈ CO(F) and there is no E′ ∈ CO(F) such that r(E′

F ) ⊃ E⊕,
• E ∈ ST(F) iff E ∈ CO(F) and E⊕ = A,
• E ∈ STG(F) iff E is conflict-free in F and there is no E′ that is conflict-free in F such that

r(E′
F ) ⊃ E⊕,

• E ∈ GR(F) iff E ∈ CO(F) and there is no E′ ∈ CO(F) such that E′ ⊂ E,
• E ∈ ID(F) if and only if E is admissible, E ⊆ ⋂

PR(F) and there is no admissible E′ ⊆⋂
PR(F) such that E′ ⊃ E.

For a more detailed view of these semantics, please refer to [11]. Note that grounded and ideal exten-
sions are uniquely determined and always exist [30,31]. Thus, they are also called single-status seman-
tics. The other semantics introduced are multi-status semantics, where several extensions may exist. The
stable semantics is the only case where an AF might possess no extension at all.

We report the definition of eight well-known problems in Abstract Argumentation, where the first six
are decision problems:

• Credulous acceptance Credσ : given F = (A, →) and an argument a ∈ A, is a contained in some
E ∈ σ(F)?

• Sceptical acceptance Sceptσ : given F = (A, →) and an argument a ∈ A, is a contained in all
E ∈ σ(F)?

• Verification of an extension Verσ : given F = (A, →) and a set of arguments E ⊆ A, is E ∈ σ(F)?
• Existence of an extension Existsσ : given F = (A, →), is σ(F) �= ∅?
• Existence of non-empty extension Exists¬∅

σ : given F = (A, →), does there exist E �= ∅ such that
E ∈ σ(F)?

• Uniqueness of the solution Uniqueσ : given F = (A, →), is σ(F) = {E}?
• Enumeration of extensions Enumσ : given F = (A, →), return all E ∈ σ(F).
• Counting of extensions Countσ : given F = (A, →), return |σ(F)|.
Computational argumentation tools enable formalizing complex problems and understanding real-

world situations where conflicting information must be considered to draw non-trivial conclusions. For
example, verifying the acceptance of arguments and enumerating extensions is used in applications such
as planning [67] and decision support [26]. For an in-depth discussion of the complexity results for the
problems mentioned above, we refer to [32] and, in particular, to [51] for enumeration problems and
[12,39] for counting problems.

2.2. Motivations to dynamic frameworks

In previous ICCMA editions, all the frameworks in each data set are static since all the AFs are
sequentially passed as input to solvers, representing different and independent problem instances. Hence,
all tasks are computed from scratch without taking any potentially useful knowledge from previous runs
into account. However, AFs can be considered in practical applications as a temporary situation, which
evolves when new knowledge becomes available that requires the addition or retraction of arguments
and attacks. For example, users of online social networks [48] may engage in disputes and repeatedly
add or retract arguments and attacks to express their point of view in response to the last move made by
their adversaries in the ongoing digital conversation. Users often disclose as few arguments/attacks as
possible in these situations. For this reason, ICCMA’19 also features additional tracks to evaluate solvers
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on dynamic Dung’s frameworks. The aim is to test those solvers dedicated to efficiently recomputing a
solution after a minor change in the original AF. In this case, a problem instance consists of an initial
framework (as for classical tracks) and an additional file storing a sequence of additions/deletions of
attacks (between already existing arguments) on the initial framework, i.e. a list of modifications. This
file has a simple text format, i.e. a sequence of +att(a, b) (attack addition) or −att(d, e) (attack deletion).
The final single output must report the solution for the initial framework and each change. The dynamics
of frameworks have attracted recent and broad interest in the computational argumentation community.
We describe some related work, pointing to the research groups interested in organizing such a track.

In [23], the authors investigate the principles in which a grounded extension of a Dung’s AF does not
change when the set of arguments/attacks is changed. The authors of [28] study how the extensions can
evolve when a new argument is considered. The focus is on adding a single argument interacting with
a non-attacked argument. Several properties are defined for the change operations according to how the
extensions are modified. For instance, a change operation can be conservative if the set of extensions is
the same after a change. The work in [27] addresses the problem of revising AFs when a new argument
is added. In particular, the authors focus on the impact of new arguments on the set of initial extensions,
introducing various kinds of revision operators that have different effects on the semantics. For instance,
a decisive revision allows for making a decision by providing a revised extensions’ set with a unique non-
empty extension. The authors of [13] propose a division-based method to divide the updated framework
into two parts: “affected” and “unaffected”. Only the status of affected arguments is recomputed after
updates. A matrix-reduction approach similar to the previous division method is presented in [79]. In
[2], the authors compute complete, preferred, stable, and grounded semantics on an AF, given a set of
updates. This approach finds a reduced (updated) AF sufficient to compute an extension of the whole AF
and uses state-of-the-art algorithms to recompute an extension of the reduced AF only. In [3], the same
authors extend their dynamic techniques to improve the skeptical acceptance of arguments in preferred
extensions.

Modifications of AFs are also studied in the literature as a base to compute robustness measures of
frameworks [22,59,64]. In particular, by adding/removing an argument/attack, the set of extensions sat-
isfying a given semantics may or may not change. For instance, one could be interested in computing
the number of modifications needed to change this set or measure the number of modifications needed to
have a different set of extensions satisfying a desired semantics. In the latter case, the user is interested
in estimating how distant two different points of view are. A similar approach has also been proposed
in [14], where the problem of revising argumentation frameworks according to the acquisition of new
knowledge is taken into account. While attacks among the old arguments remain unchanged, new argu-
ments and attacks among them can be added. In particular, the authors introduce the notion of enforcing,
namely the process of modifying an AF (and possibly changing its semantics) to obtain a desired set of
extensions.

Since in ICCMA’19, the inclusion of a dynamic track was launched for the first time; the changes
have been limited to only attacks (that could be added or removed), which is an essential modification
one can perform on an AF. Indeed, the dynamic challenge fostered some research, which was one of the
motivations for the proposed dynamic challenge. See for instance [1,3,4,62].

2.3. Motivations to approximate algorithms

Generally speaking, approximate algorithms are methods that can compute the solution to a problem
faster than what exact algorithms can normally perform, but with a risk of providing an incorrect solution
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in some cases. This kind of approach had already been studied in the argumentation community before
the organization of ICCMA 2021 [52,60,74]. Although not always correct, these algorithms can be
highly necessary in situations where exact algorithms (e.g., SAT-based techniques) cannot solve the
problem, or at least not fast enough to satisfy the needs of the users (e.g. if the argumentation framework
is too large and the user expects a quick answer).

In the first organization of an approximate track at ICCMA, the focus was on the simplest problems
related to the acceptability (credulous or skeptical) of arguments from the point of view of the nature of
the answer, not from the point of view of complexity (see Section 3.2). However, some interesting ideas
could be implemented for future ICCMA competitions, as discussed in Section 9.2.

3. The competition tracks and tasks

3.1. Tracks and tasks at ICCMA’19

ICCMA’19 let solvers participate in 7 classical tracks, the same as in ICCMA’17. Each track is named
after the name of a semantics (CO, PR, ST, SST, STG, GR, and ID). Then, tasks are characterized by
a problem and the semantics for which the problem is solved. In ICCMA’19, the following well-known
problems are considered:

SE-σ : Given F = (A, →), return some set E ⊆ A that is a σ -extension of F .
EE-σ : Given F = (A, →), enumerate all sets E ⊆ A that are σ -extensions of F .
DC-σ : Given F = (A, →) and a ∈ A, decide whether a is credulously accepted in F under σ .
DS-σ : Given F = (A, →) and a ∈ A, decide whether a is sceptically accepted in F under σ .

For single-status semantics (GR and ID) the problem EE is equivalent to SE, and DS is equivalent
to DC. Also, note that the DC problem returns the same results when computed for CO and PR, but
to allow participation in the PR track without implementing tasks on the CO semantics (or vice versa),
both the two tasks were maintained. The tasks selected in ICCMA’19 were:

CO: Complete Semantics (SE, EE, DC, DS);
PR: Preferred Semantics (SE, EE, DC, DS);
ST: Stable Semantics (SE, EE, DC, DS);
SST: Semi-stable Semantics (SE, EE, DC, DS);
STG: Stage Semantics (SE, EE, DC, DS);
GR: Grounded Semantics (only SE and DC);
ID: Ideal Semantics (only SE and DC).

The combination of problems with semantics amounts to 24 tasks overall. In addition, 4 new tracks
were dedicated to the solution of problems over dynamic frameworks, this time using the semantics
originally proposed in [30]: σ ∈ {CO, PR, ST, GR}. In this case, a problem instance consists of an
initial framework and an additional file storing a sequence of additions/deletions of attacks (see Section 4
for more details). The dynamics tasks adopted in the competition are:

CO: Complete Semantics (SE, EE, DC, DS);
PR: Preferred Semantics (SE, EE, DC, DS);
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ST: Stable Semantics (SE, EE, DC, DS);
GR: Grounded Semantics (only SE and DC).

In this case, the combination of problems with semantics amounts to a total of 14 tasks. Tasks in
dynamic tracks are invoked by appending “D” to the end of the intended task: for instance, EE-PR-D
denotes the enumeration task with the preferred semantics. In total, ICCMA’19 is composed of 11 tracks
that collect 38 different tasks. Each participating solver can compete in an arbitrary set of tasks. If a
solver supports all track’s tasks (e.g. the track on complete semantics), it also automatically participates
in the corresponding track.

3.2. Tracks and tasks at ICCMA’21

The first difference between ICCMA’19 and ICCMA’21 is the removal of the grounded semantics
(GR) from the competition since it is not considered a challenging issue (recall that computing the
grounded extension can be done linearly with respect to the number of arguments). Then, the competition
was divided into two “main” tracks, one for exact algorithms and the other for approximate algorithms.
In the exact track, the EE task was replaced with a counting task:

CE-σ : Given F = (A, →), count the sets E ⊆ A that are σ -extensions of F .

Naturally, this new problem CE is trivial for single-status semantics (i.e. ID only, for ICCMA’21). Thus,
the exact track consists of the following tasks:

CO: Complete Semantics (SE, CE, DC, DS);
PR: Preferred Semantics (SE, CE, DC, DS);
ST: Stable Semantics (SE, CE, DC, DS);
SST: Semi-stable Semantics (SE, CE, DC, DS);
STG: Stage Semantics (SE, CE, DC, DS);
ID: Ideal Semantics (only SE and DS).

In summary, the exact track of ICCMA’21 contains 6 sub-tracks (corresponding to the semantics), col-
lecting 22 tasks.

The second track, dedicated to approximate algorithms, has 6 sub-tracks corresponding to the seman-
tics. In this case, the focus is on decision problems. Therefore, the approximate track of ICCMA’21
consists of the following tasks:

CO: Complete Semantics (DC, DS);
PR: Preferred Semantics (DC, DS);
ST: Stable Semantics (DC, DS);
SST: Semi-stable Semantics (DC, DS);
STG: Stage Semantics (DC, DS);
ID: Ideal Semantics (only DS).

This approximate track thus contains 11 tasks, and ICCMA’21 consists, in total, of 2 tracks, 12 sub-
tracks, and 33 tasks. Table 1 summarises all the tracks and tasks of ICCMA’19 and ICCMA’21.
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Table 1

All tracks and tasks at ICCMA’19 and ICCMA’21

CO PR ST SST STG GR ID
DC DS SE EE CE DC DS SE EE CE DC DS SE EE CE DC DS SE EE CE DC DS SE EE CE DC SE DC DS SE

ICCMA’19 Classic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Dynamic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ICCMA’21 Exact ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Approx. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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4. Input and output formats

The file formats taken as input by solvers are described below. Benchmarks in ICCMA’19 and IC-
CMA’21 were available in two different formats (commonly used to represent AFs) to allow participat-
ing solvers to choose their preferred format during the competition.7 The required output format is also
briefly described. All the solvers needed to adhere to both input and output formats for facilitating the
evaluation and comparison of results.

4.1. Input format

Each benchmark instance, that is, each AF, is represented in two different file formats: trivial graph
format (tgf) and aspartix format (apx), both used in previous editions of ICCMA. tgf8 is a simple
text-based adjacency list file format for describing graphs. The format consists of a list of node labels
and a # character followed by a list of edges, which specify node pairs and an optional edge label. For
example, 1 2 # 1 2 represents a framework with two arguments and an attack from the first to the
second one. The apx format is described in [37]. This format is more oriented to computational argu-
mentation problems, but the encoded information is, in practice, very similar to tgf, even if arguments
and attacks are always associated with a specific label. The previous example with arguments named a

and b corresponds to “arg(a). arg(b). att(a,b).”.
A novel format for dynamic AFs is introduced. For each (dynamic) problem instance, two files are

required: the initial framework (either in apx or tgf format) and a text file with a list of changes to
apply. The file with changes declares a list of modifications (one per line) of the initial framework.
The file format with changes is inspired by the original tgf and apx formats. The format used for
modifications is illustrated in the example below.

Example 4.1. The initial framework of Fig. 1 is provided in a file myExample.apx with the following
content:

arg(a).
arg(b).
arg(c).
arg(d).
arg(e).
att(a,b).
att(c,b).
att(c,d).
att(d,c).
att(d,e).

The second file contains the list of modifications to be sequentially performed on the initial AF. The
name of this file has to be the same as the first one but with a different extension .apxm instead of .apx.
In this example, myExample.apxm is:

7The solvers that can “speak” the two format languages were required to select the one they wanted to be tested on in
ICCMA’19. For ICCMA’21, the apx format was arbitrarily chosen.

8Trivial graph format: http://en.wikipedia.org/wiki/Trivial_Graph_Format.

http://en.wikipedia.org/wiki/Trivial_Graph_Format
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Fig. 2. The three AFs obtained from the modifications in myExample.apxm.

Fig. 3. The three AFs obtained from the modifications in myExample.tgfm.

+att(b,c).
-att(a,b).
+att(e,d).

Applying these changes to the initial file produces three frameworks, represented in Fig. 2.

A second example shows the same framework in the tgf format.

Example 4.2. Example 4.1 is considered using the tgf format. The file with modifications needs to
have suffix .tgfm. Hence, the same changes are represented in myExample.tgfm:

+2 3
-1 2
+5 4

We obtain the three additional frameworks as shown in Fig. 3.

To generate the problem instances for the new tracks, a subset of the frameworks used in classical
tracks was selected. A sequence of modifications was produced for each of the selected frameworks,
where attacks were added only between existing arguments. No new argument was introduced during
this process. Further details can be found in Section 5.3. For a modification file with n changes, a solver
must compute solutions for n different frameworks by applying the modifications in sequence (starting
at the top of the file).
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Fig. 4. We here show the output format of both EE and SE-D tasks. In this specific example, the output corresponds to the
result of the EE-PR task on the AF in Fig. 1.

4.2. Output format

The output format of ICCMA’17 has been retained, except for the EE task. The printed standard
output for the DC and DS tasks was either YES or NO. For the SE task, the list of arguments belonging
to the returned extension is encoded as, e.g., [a1, a2, a4]. For EE, the list of extensions is returned as
illustrated in the example in Fig. 4. Solutions for CE (introduced in ICCMA’21) are simply the number
of extensions printed on the standard output. Non-existence of solutions (e.g. in case of ST) was encoded
by [ ], while an empty extension is simply described as [ [ ] ].

For the dynamic tracks, all answers were output in the form of a list where the first element represents
the solution of the required task on the initial framework; each following element in this list is the
answer returned for the (i + 1)th framework that incorporates the first i changes in the modification
file, with i ∈ [1..n] and n being the total number of changes in the modification file. DC-σ -D and
DS-σ -D tasks returned a list of YES or NO, one for each modification including the initial framework;
for example [YES,YES,NO]. The SE-σ -D tasks required a list as shown in Fig. 4: one extension found
for each modification. The EE-D tasks needed one more level of indentation, i.e. Fig. 4 repeated for
every modification and with one more pair of delimiting square parentheses, since a set of extensions
needed to be returned for each modification.

5. Participants, benchmarks, evaluation, reference solver

This section will cover the solvers and their features, the benchmarks utilized in the competition, and
the evaluation process used to rank the solvers.

5.1. Participants at ICCMA’19

For the third edition, the competition received 9 solver submissions from research groups in Austria,
Finland, France, Germany, Italy, Romania, and the UK. Table 2 lists the solvers, related participants,
and affiliations. Table 3 shows the tasks all the solvers participated in: 3 solvers were submitted to all
the tracks, including dynamic ones. The authors of the solvers used different techniques to implement
their applications. In particular, 4 solvers were based on transforming argumentation problems to SAT, 1
on the transformation to ASP, 1 relied on machine learning, and 3 were built on tailor-made algorithms.
Following the alphabetical order, we provide a summary of each solver and refer the reader to the official
abstract for a more detailed discussion.9

Argpref is a solver specialized in computing the ideal semantics. It implements a SAT-with-
preferences approach to computing the backbone of a propositional encoding of admissible sets. Then,
it applies polynomial-time post-processing to construct the ideal extension. Insights into the techniques
used for the implementation are provided in [66].

9ICCMA’19 solvers: https://www.iccma2019.dmi.unipg.it/submissions.html.

https://www.iccma2019.dmi.unipg.it/submissions.html
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Table 2

List of ICCMA’19 participants

Solver Authors
Argpref Alessandro Previti and Matti Järvisalo (Univ. of Helsinki, Finland)
Aspartix-V19 Wolfgang Dvořák, Anna Rapberger, Johannes P. Wallner and Stefan Woltran (TU Wien, Austria)
CoQuiAAS Emmanuel Lonca, Jean Marie Lagniez (Univ. of Artois & CNRS, France), and Jean-Guy Mailly (Univ.

Paris Descartes, France)
EqArgSolver Odinaldo Rodrigues (King’s College London, UK)
Mace4/Prover9 Adrian Groza, Liana Toderean, Emanuel Baba, Eliza Olariu, George Bogdan and Oana Avasi, (Tech. Univ.

of Cluj-Napoca, Romania)
μ-toksia (2019) Andreas Niskanen and Matti Järvisalo (Univ. of Helsinki, Finland)
Pyglaf (2019) Mario Alviano (Univ. of Calabria, Italy)
Taas-dredd Matthias Thimm (Univ. of Koblenz-Landau, Germany)
Yonas Lars Malmqvist (Univ. of York, UK)

An early version of Aspartix-V19 (simply Aspartix in the following) participated in ICCMA’15 and
also was the reference solver in ICCMA’17. ASPARTIX delegates the main reasoning to an answer set
programming (ASP) solver with argumentation semantics and reasoning tasks encoded via ASP rules.
We refer to [35] for details on the version submitted to ICCMA’19.

CoQuiAAS v3.0 (simply CoQuiAAS in the following) participated in ICCMA’15, ICCMA’17 and
ICCMA’19. Compared to the version used in ICCMA’17 (see [53] for details), the latest implementa-
tion of CoQuiAAS introduces changes also to handle dynamics. The full knowledge of the dynamics
is exploited through a formula in which attacks can be activated/deactivated by using assumptions. Co-
QuiAAS has also been endowed with an integrated maximal satisfiable subsets (MSS) solver that took
advantage of the approach proposed in [44] (the previous version resorted to an external solver). Other
adjustments have been made to obtain an output compliant with the specifications of ICCMA’19.

EqArgSolver was first submitted to ICCMA’17 [68]. The version presented in ICCMA’19 has been
improved with a series of changes aimed at increasing efficiency, readability, and software maintenance.
First of all, the implementation of AFs and solutions has been moved to dedicated class objects. Then,
to facilitate the representation of solutions, EqArgSolver associates each argument with an internal iden-
tifier determined by the position of the argument itself within the topological structure of the AF. The
internal representation of solutions also changes, going from an approach with unordered maps (which
was highly inefficient in terms of memory requirements) to the use of simple vectors of unsigned inte-
gers.

The Mace4/Prover9 solver relies on the combined search capabilities of two tools: Prover9, an auto-
mated theorem prover for first-order and equational logic, and Mace4, which searches for finite models
and counterexamples. The authors tuned search parameters for the specific task of labeling AFs. In the
pre-processing phase, arguments receive a weight depending on the number of outgoing attacks and then
are ordered in a decreasing way. The first argument in the ranking (the one that attacks the most) is set
to In, and the satisfiability is checked using Mace4. If the test fails, that argument is changed to Out, and
the next argument in the ranking is set to In. The procedure continues until either a solution is found or
all arguments have been tested. This method is expected to work well in finding a single extension, as
Mace4’s domain size may cause a model explosion.

The μ-toksia solver made its debut in ICCMA’19; it is a purely SAT-based implementation, in the
sense that all the reasoning by the system is performed by calls to a Boolean satisfiability (SAT) solver,
including polynomial-time computations such as the grounded semantics, as well as incremental checks
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Table 3

Tasks supported by each solver in ICCMA’19

Dynamic CO PR ST SST STG GR ID
DC DS SE EE DC DS SE EE DC DS SE EE DC DS SE EE DC DS SE EE DC SE DC SE

Argpref ✓ ✓

Aspartix-V19 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CoQuiAAS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

EqArgSolver ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Mace4/Prover9 ✓ ✓ ✓

μ-toksia (2019) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Pyglaf (2019) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Yonas ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Taas-dredd ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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for the persistence of (non-)solutions under changes in the dynamic tasks. As shown in a KR20 paper
[63], for DC and DS tracks, μ-toksia was able to scale much more and resulted in the best solver when
tested against ICCMA’17 benchmarks instances. For a careful explanation of its implementation, refer
to [63].

The Pyglaf reasoner competed in ICCMA’17 and ICCMA’19. It reduces problems to circumscription
by means of linear encodings. Circumscription is a non-monotonic logic formalizing common sense
reasoning by means of a second-order semantics, which essentially enforces minimizing the extension
of some predicates. The circumscription solver extends the SAT solver glucose and implements an al-
gorithm based on unsatisfiable core analysis. A thorough implementation description can be found in
[5].

Taas-dredd implements a DPLL-like approach (Davis, Putnam, Logemann, Loveland), which per-
forms an exhaustive search iteratively trying possible acceptability values for the arguments until a valid
labeling is found or backtracking is needed. The search order is guided by domain-independent heuristics
that aim to minimize backtracking steps; information propagation is used to infer acceptability values
once certain decisions are made. Additional information and source codes can be found on the Taas
project web page.10

Yonas, first introduced in ICCMA’19, consists of an experimental abstract argumentation solver based
on a combination of Deep Reinforcement-learning (DRL) and Monte Carlo Tree Search (MCTS). The
implementation is realized in Python and PyTorch (a deep learning framework). The solver works with
two main phases: pre-training and runtime. In the former phase, the DRL model is trained on a bench-
mark AFs set from ICCMA’17. During the runtime phase, the solver uses MCTS to search for solutions
to a specific problem. The tree search is guided by a set of probabilities computed by the deep neural
net, and the moves taken by MCTS feedback into the training of the neural net.

5.2. Participants in ICCMA’21

ICCMA’21 received 9 solver submissions as well from research groups in Austria, Finland, Germany,
Italy, and the UK. The solvers and their developers are listed in Table 4, while Table 5 shows the solvers’
participation in sub-tracks. The participation of a solver in a sub-track means that it solves all the tasks in

Table 4

List of ICCMA’21 participants

Solver Authors
AFGCN Lars Malmqvist (Univ. of York, UK)
A-Folio DPDB Johannes K. Fichte (TU Dresden, Germany), Markus Hecher (TU Wien, Austria), Piotr Gorczyca (TU

Dresden, Germany) and Ridhwan Dewoprabowo (TU Dresden, Germany)
Aspartix-V21 Wolfgang Dvořák (TU Wien, Austria), Matthias König (TU Wien, Austria), Johannes P. Wallner (TU Graz,

Austria) and Stefan Woltran (TU Wien, Austria)
ConArg Stefano Bistarelli, Fabio Rossi, Francesco Santini and Carlo Taticchi (Univ. of Perugia, Italy)
FUDGE Matthias Thimm (Univ. of Koblenz-Landau, Germany), Federico Cerutti (Univ. of Brescia, Italy) and

Mauro Vallati (Univ. of Huddersfield, UK)
HARPER++ Matthias Thimm (Univ. of Koblenz-Landau, Germany)
MatrixX Maximilian Heinrich (University of Leipzig, Germany)
μ-toksia (2021) Andreas Niskanen and Matti Järvisalo (Univ. of Helsinki, Finland)
Pyglaf (2021) Mario Alviano (Univ. of Calabria, Italy)

10Taas project web page: http://taas.tweetyproject.org.

http://taas.tweetyproject.org
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Table 5

Tasks supported by each solver in ICCMA’21

Exact Track Approximate Track
CO PR ST SST STG ID CO PR ST SST STG ID

AFGCN ✓ ✓ ✓ ✓ ✓ ✓

A-Folio DPDB ✓ ✓

Aspartix-V21 ✓ ✓ ✓ ✓ ✓ ✓

ConArg ✓ ✓ ✓ ✓ ✓ ✓

FUDGE ✓ ✓ ✓ ✓

HARPER++ ✓ ✓ ✓ ✓ ✓ ✓

MatrixX ✓ ✓

μ-toksia (2021) ✓ ✓ ✓ ✓ ✓ ✓

Pyglaf (2021) ✓ ✓ ✓ ✓ ✓ ✓

Table 6

Tasks supported by solvers participating in the classical track of ICCMA’19 and in the exact track of ICCMA’21

CO PR ST SST STG ID
A-Folio DPDB ICCMA’21 ICCMA’21
Argpref ICCMA’19
Aspartix ICCMA’19 ICCMA’19 ICCMA’19 ICCMA’19 ICCMA’19 ICCMA’19

ICCMA’21 ICCMA’21 ICCMA’21 ICCMA’21 ICCMA’21 ICCMA’21
ConArg ICCMA’21 ICCMA’21 ICCMA’21 ICCMA’21 ICCMA’21 ICCMA’21
CoQuiAAS ICCMA’19 ICCMA’19 ICCMA’19 ICCMA’19 ICCMA’19 ICCMA’19
EqArgSolver ICCMA’19 ICCMA’19 ICCMA’19
FUDGE ICCMA’21 ICCMA’21 ICCMA’21 ICCMA’21
Mace4/Prover9 ICCMA’19
MatrixX ICCMA’21 ICCMA’21
μ-toksia ICCMA’19 ICCMA’19 ICCMA’19 ICCMA’19 ICCMA’19 ICCMA’19

ICCMA’21 ICCMA’21 ICCMA’21 ICCMA’21 ICCMA’21 ICCMA’21
Pyglaf ICCMA’19 ICCMA’19 ICCMA’19 ICCMA’19 ICCMA’19 ICCMA’19

ICCMA’21 ICCMA’21 ICCMA’21 ICCMA’21 ICCMA’21 ICCMA’21
Yonas ICCMA’19 ICCMA’19 ICCMA’19
Taas-dredd ICCMA’19 ICCMA’19 ICCMA’19

the sub-track. We also summarize in Table 6 the tasks supported by all solvers participating in the clas-
sical and exact tracks of the ICCMA’19 and ICCMA’21 competitions. Three of the submitted solvers,
namely Aspartix, μ-toksia, and Pyglaf, are an updated version of those participating in the 2019 com-
petition. Similarly to ICCMA’19, various techniques are used by the solvers, namely 3 solvers use the
transformation of argumentation problems to SAT, 1 uses a transformation to ASP, 1 uses constraint
programming, 1 is based on machine learning, and finally 3 are built on tailor-made algorithms.

AFGCN11 proposes an approximate algorithm based on a Graph Convolutional Network model,
trained on data from the previous editions of ICCMA. It extends the work described in [60].

A-Folio DPDB12 is a portfolio using a method specifically designed for counting problems, based on
tree decompositions: if the tree-width is smaller than a given threshold, then DPDB [40] (an approach

11See http://argumentationcompetition.org/2021/downloads/afgcn.pdf.
12See http://argumentationcompetition.org/2021/downloads/a-folio-dpdb.pdf.

http://argumentationcompetition.org/2021/downloads/afgcn.pdf
http://argumentationcompetition.org/2021/downloads/a-folio-dpdb.pdf
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initially designed for model counting in propositional logic) is used to determine the number of exten-
sions. If the tree-width is too large, then μ-toksia [63] is used to enumerate the extensions, and this
enumeration is used to obtain the number of extensions. Finally, for other tasks (SE, DC, DS), μ-toksia
is directly used.

Aspartix-V21 [34] (when clear from the context, we only write Aspartix), based on ASP encoding
of abstract argumentation, is an update of Aspartix-V which already participated to ICCMA’15 and
ICCMA’19.

ConArg13 is a solver based on constraint programming. The solver submitted to ICCMA’21 is an
update of the version that participated in previous editions. More details on the approach can be found
in [18,21].

FUDGE [72] uses SAT reductions to solve argumentation problems. While most of the reductions are
similar to standard approaches in the literature, reasoning with the preferred and ideal semantics benefits
from a new method proposed by the authors of the solver [73]. Roughly speaking, it uses a characteriza-
tion of skeptical acceptability under the preferred semantics, where only some specific admissible sets
are used. It means that the solver can avoid the cost of computing all the maximal admissible sets.

HARPER++14 is an approximate solver relying on the grounded extension. The idea is quite simple:
for all the semantics considered, the DC task is solved by answering YES exactly for the arguments that
belong to the grounded extension and NO otherwise, and for DS the answer is NO for arguments attacked
by the grounded extension, and YES otherwise.

MatrixX [45] represents some properties of arguments (attacks and defence) as matrices and uses an
approach inspired by Knuth’s X algorithm for exact cover [47].

μ-toksia15 is a solver based on SAT reductions; the solver submitted to ICCMA’21 is an updated
version of the solver submitted to ICCMA’19. More details can be found in [63].

Pyglaf [6] transforms abstract argumentation tasks into circumscription and uses a SAT solver to
obtain the result. Previous versions of the solver have been submitted to ICCMA’17 and ICCMA’19, see
[5] for more details.

5.3. Benchmark selection for ICCMA’19

Starting from ICCMA’17, the competition welcomes argumentation solvers and the benchmarks on
which the evaluations are performed. Six benchmarks have been submitted to ICCMA’17,16 each of
which focused on a specific theme, from generating particularly difficult instances to practical scenarios
such as traffic networks and planning problems. Opening up to benchmarks in the competition goes
toward testing the performance of argumentation solvers on real problems.

A total of 326 AF instances were selected for ICCMA’19 from the ones that were used in ICCMA’1717

and two new benchmarks submitted to ICCMA’19.18 The selected benchmarks serve two primary pur-
poses. Firstly, we intend to assess the progress of solvers for argumentation problems in comparison to
the previous edition of the competition. Thus, we have included instances from ICCMA’17. Secondly,
we aim to scrutinize the behavior of different solvers with more practical benchmarks and closer to

13See http://argumentationcompetition.org/2021/downloads/conarg.pdf.
14See http://argumentationcompetition.org/2021/downloads/harper++.pdf.
15See http://argumentationcompetition.org/2021/downloads/mu-toksia.pdf.
16ICCMA’17 benchmark list: http://argumentationcompetition.org/2017/submissions.html#benchmarks.
17ICCMA’17 benchmark selection: http://argumentationcompetition.org/2017/benchmark_selection_iccma2017.pdf.
18A description of new ICCMA’19 benchmarks: https://iccma2019.dmi.unipg.it/submissions.html.

http://argumentationcompetition.org/2021/downloads/conarg.pdf
http://argumentationcompetition.org/2021/downloads/harper++.pdf
http://argumentationcompetition.org/2021/downloads/mu-toksia.pdf
http://argumentationcompetition.org/2017/submissions.html#benchmarks
http://argumentationcompetition.org/2017/benchmark_selection_iccma2017.pdf
https://iccma2019.dmi.unipg.it/submissions.html
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real-world instances. By doing so, we can identify the most effective solvers to offer solutions to real
problems. While testing difficult instances can push solver limits, we aimed to compare solver perfor-
mance across all collected benchmarks. As pointed out in [69], a good number of instances adopted in
ICCMA’17 were too hard for all the solvers submitted in that competition. For example SemBuster is a
group of 16 AFs, having between 60 and 7500 arguments, which were classified as 2 very easy, 1 easy,
3 medium, 9 hard, 1 too hard, for what concerning the EE-PR track [42]. However, 15 out of these 16
AFs could not be enumerated at all in the EE-CO track [69]. ICCMA’17 instances on which all the
submitted solvers did not score more than 0 points were counted: out of 350 instances, we obtained 114
AFs in EE-STG, 69 in EE-CO, 53 in EE-PR, 41 in EE-SST, 30 in EE-ST. In practice, these AFs did
not participate in the evaluation of the solvers (that is, 10-30% of the tested AFs). While none of the DC
and DS tasks showed this characteristic, all the SE tasks (except SE-CO) presented more than 20 “void”
instances. Even on 5 AFs in the SE-GR track, no solver could find a solution before the timeout (these
instances have more than 500, 000 arguments).

The instances chosen for the competition, which avoided those that were overly hard, were selected
using ConArg [18,21], a solver developed by some of the authors of this paper.19 Only the instances
ConArg could solve under extended time and memory conditions were selected from the benchmarks.
ConArg used an allocation of 10 times the competition constraints’ time limit and memory space to solve
the problems (see Section 5.7). As a result, the dataset consists of relatively easy instances. Detailed
results in Appendix A show that, in ICCMA’19, no instance was left unsolved by all the participants.
Therefore, all the selected 326 AFs were practically used in the tests. ConArg was also used as the
reference solver to check the correctness of solutions returned by participants. However, it should be
noted that some of the chosen instances were still challenging, as 1315 out of 46618 attempts to solve
various tasks per each solver and instance ended with timeouts.

About two third of the instances were selected from ICCMA’17 benchmarks (i.e., 204). The number
of selected instances for each class of ICCMA’17 are reported in A; their features are summarised in
[42]. The remaining instances (i.e., 122) came from the two new benchmarks that were submitted to IC-
CMA’19. Only those AFs that ConArg could solve with extended conditions were selected. The first new
set of benchmark instances, named ICCMA19B1, was submitted by Bruno Yun and Madalina Croitoru.
It is a practically oriented benchmark on logic-based AFs instantiated from inconsistent knowledge bases
expressed using Datalog±, a language widely used in the Semantic Web. In the competition, only those
instances from the Small and Medium classes (as labeled by the authors proposing the benchmarks) were
used. The second set of new benchmark instances, hereafter referred to as ICCMA19B2, was produced
by a benchmark generator supplied by Billy D. Spelchan and Gao Yong. Instead of a random model
generating directed graphs D(n, q), where n is the number of vertices and p the edge probability, the
authors propose D(n, p, q), where q is the probability of the attack to be mutual. The motivation is that
with D(n, q), the existence of an extension in such a random AF is almost always guaranteed, making
it less helpful in testing exact solvers (e.g. while testing the existence of a stable extension). In Table 7,
we report the main statistics about the instances coming from these new datasets adopted in ICCMA’19.
All such AFs are connected and have at least one cycle.

To sum up, Fig. 5 reports the distribution of benchmark instances: labels from A1 until T4 come
from ICCMA’17, while the other three labels (S, M, and N) come from the two new benchmarks, de-

19For this reason, this solver did not participate in ICCMA’19. However, it participated in ICCMA’15, ICCMA’17 and
ICCMA’21.
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Table 7

Considering the instances selected from the new submitted benchmarks to be part of ICCMA’19 (one per row), the columns
respectively report the minimum/maximum/median number of arguments, the minimum/maximum/median number of attacks,
how many AFs are strongly connected over the total of selected AFs, and finally the minimum/maximum/median number of
strongly connected components

Min/Max/Med Ar. Min/Max/Med At. #isSC/total Min/Max/Med #SCC
ICCMA19B1 (Small) 5/383/30 8/32768/296 33/105 1/61/4
ICCMA19B1 (Medium) 391/595/519 67,277/165,016/126,681 0/7 30/173/118
ICCMA19B2 100/320/176 2025/30,406/9160.5 10/10 1/1/1

Fig. 5. The distribution of AF instances in the ICCMA’19 benchmark, selected from different benchmarks taken from IC-
CMA’17 (from A1 to T4), and from the two new submissions: S(mall) and M(edium) instances from ICCMA19B1, while N
represents the instances from ICCMA19B2.

scribed in the following paragraphs.20 A reports the exact number of frameworks selected from each
sub-benchmark.

Dynamic-tasks benchmark-instances. All the introduced AFs and generators are intended for classi-
cal tasks in argumentation. Therefore, a generator was developed to produce benchmarks for dynamic
tracks that create files with changes to AFs (see Section 4.1). Each addition/removal of an edge has an
equal probability of 0.5. In removal, the attack to be deleted is selected among all the original attacks
using a uniform distribution (it is impossible to remove a newly added attack). In case of addition, the
two adjacent arguments are selected by using a uniform distribution, avoiding the generation of self-
attacks and attacks that are already in. The generator reads both apx and tgf formats and produces
apxm/tgfm modifications (see Section 4.1). The same 326 instances have been used for the dynamic
tracks, including eight modifications to each AF, for a total of 2934 instances.

5.4. Benchmark selection for ICCMA’21

For the benchmark selection of ICCMA’21, a call for benchmarks was launched, which was unfor-
tunately unsuccessful: no set of instances nor any generator was submitted. This leads to two paths:

20A more detailed description of these benchmark generators can be found on the website of ICCMA’19).
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Fig. 6. The distribution of AF instances in the ICCMA’21 benchmark, selected from different benchmarks taken from IC-
CMA’19. A1 to T4 represent the instances from ICCMA’17, S(mall) and M(edium) are the instances from ICCMA19B1, while
N represents the instances from ICCMA19B2.

selecting a subset of ICCMA’19 instances and generating new ones. The ICCMA’19 instances were se-
lected to be challenging enough to distinguish efficient solvers while still being solvable by some of
them. Building the benchmark for ICCMA’21 in this way also allows for evaluating solver evolution
from 2019 to 2021. Then, the hardest instances among the ones used at ICCMA’19 were selected, rank-
ing the instances by two criteria: for a given AF F , we counted how many times a solver reached the
timeout on F (for any problem and any semantics) during ICCMA’19. We also computed the average
runtime of all solvers for solving any problem under any semantics on F . Then, we selected all the AFs
such that the number of timeouts is greater or equal to 6, or the average runtime is greater or equal to
60 seconds. This means that all the instances that can be considered too easy (having almost no timeout
or being solved in under a minute) were discarded, leading to a set of 107 AFs. Their distribution is
described in Fig. 6. Most of them are actually instances from ICCMA’17 (datasets A1 to T4), while only
12 AFs have been selected from those submitted in response to the call for benchmarks at ICCMA’19.
Detailed numbers of instances are provided in Appendix A.

ICCMA’21 also proposed a new approach for generating AFs considering underlying tree structures.
More precisely, a tree T that will be used as a skeleton for the AF is first constructed (Fig. 7a). T
is a perfectly balanced d-tree of height h generated randomly, where d and h are fixed and given as
parameters. Then, each node of the tree is associated with a fresh local AF graph (fresh in the sense
where each AF’s arguments are disjointed, see Fig. 7b). To link local AFs together, for each AF AN

rooted to a node N of T , attacks between arguments of AN and arguments coming from AFs present
in the left or right subtree of N are added (Fig. 7c). The final AF is the set of local AFs and the added
attacks (see Fig. 7d).

The number of arguments k that are used to be linked to outside AFs is fixed and is given as a pa-
rameter. For a given AF AN , let A be the set of arguments selected to be linked. Then, for each AF A′

N

present in the left or right sub-tree of N , a percentage r of arguments A′ of A′
N are selected to interact

with A. r is chosen randomly between [l, u] such that 0 � l < u � 1 and l, u are given as parameters.
Once A and A′ are identified, each pair (a, a′) ∈ A × A′ is considered and the attack (a, a′) or (a′, a) is
added with a probability one-half.
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Fig. 7. AFs generation process.

For the local AF, two random generators have been considered that are based on the following random
graph generators:21

• Barabasi-Albert preferential attachment model [10] with nb nodes and mb being the number of
edges to attach from a new node to existing nodes;

• Erdöz-Rényi [38] (or binomial graph) with ne nodes and pe being the probability for edge creation.

The values nb, mb and ne are integers and pe is between ]0, 1]. Let us observe that Barabasi-Albert
only constructs undirected graphs, which differs from what is required to construct AFs. To overcome
this issue, two graphs called the attack graph A and the defense graph D were constructed to generate
an AF. Then, for each lexicographically ordered edge (a1, a2) of A (respectively D) an attack (a1, a2)

21Those graphs were generated through the NetworkX library (networkx.org).
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(respectively (a2, a1) is added. In order to keep the correct number of edges, A and D are generated with
 1

2 × mb� (respectively  1
2 × mr�) edges for the Barabasi-Arbert model.

The numbers that are used for generating the local AFs have default values nb = 1000, mb = 70,
ne = 300, and pe = 0.1. Then, two last parameters are used for generating the tree structure: these
parameters are d (tree depth) and w (tree-width). Finally, once these parameters are fixed, the last thing
to decide is the type of the local AFs. For a given instance, either all they are of type Erdös-Rényi, or all
are of type Barabasi-Albert, or they are randomly chosen between one of them.

The details of the distribution of these instances are available online in a CSV file where the first
column indicates the type of the local AFs (E for Erdös-Rényi, B for Barabasi-Albert, and BE for the
random choice of one of them), the second and third columns give the tree depth and tree-width, and
the last column gives the number of instances.22 With all the combinations of parameters, we have 180
types of instances: 60 for each local AF type (E, B, BE). These 60 types of instances correspond to the
combination of d ∈ {5, . . . , 10} and w ∈ {1, . . . , 10}.

The motivation for developing this benchmark generation model was twofold: first of all, it seemed
intuitive that (some) large debates could be split into smaller, loosely connected debates. This is the
case, for instance, in presidential elections, where arguments about (e.g.) the economy are strongly con-
nected, arguments about environmental issues are strongly connected, but arguments about the economy
are (comparatively) only loosely connected to the ones about the environment. This is based solely on
intuition, as there is no formal evidence to support it for the moment. The second motivation was that
community-based graphs could offer interesting instances that can be solved by “clever” algorithms that
take into account the properties of the graph while being hard for purely SAT-based approaches.23 The
challenges posed by community-based instances have already been observed in other domains (e.g. SAT,
[61]), as well as the ability of the proposed model to provide challenging instances (see [56]).

Notes. A tool has been developed by the organizers of ICCMA’21 specifically for the purpose of trans-
lating from APX to TGF format. The source code and the description of how to use the tool are available
online.24

Approximate track benchmark selection. The set of benchmarks used for the approximate track is a
subset of the ones used for the complete track, containing all the instances for which the winner of
ICCMA’19 (μ-toksia) could determine the result in 4 hours. The arguments in the acceptance request
are the same as those in the exact tracks.

5.5. Scores and ranking at ICCMA’19

Each solver was given 4 GB of RAM to compute the results of tasks in both the classical and dy-
namic tracks. The timeout to compute an answer for the dynamic track was 5 minutes for each frame-
work/change: half of the time in the classical track for a single instance, that is 10 minutes. Time and
memory limits mimic previous competitions (also to have some comparison). All runs were done on
Intel Sandy Bridge CPUs with 16 cores clocked at 2.6 GHz and 64 GB of RAM, using up to all 16 cores
for different runs.

22See http://argumentationcompetition.org/2021/distribution_instances_2021.csv.
23This has been confirmed by the success of A-FOLIO-DPDB, which used a tailored approach following a measurement of

the treewidth of instances. See Section 7.1 for more details.
24https://github.com/crillab/apx2tgf

http://argumentationcompetition.org/2021/distribution_instances_2021.csv
https://github.com/crillab/apx2tgf
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The solvers were given all instances in the tracks they participated in to solve. For each instance, a
solver got (0, 1] points if it delivered the correct result (it could be incomplete, see below); −5 points
if it delivered an incorrect result; 0 points if the result was empty (e.g. the timeout was reached without
an answer) or if it was not parsable (e.g. some unexpected error message). For SE, DC, and DS, the
assigned score was 1 if the solver returned the correct answer (respectively “yes”, “no”, or just an
extension). For EE, a solver received a (0, 1] fraction of points depending on the fraction of found
enumerated extensions (1 if it returned all of them).

For the dynamic tracks, a result was considered correct and complete if, for n changes in a file, n + 1
correct and complete results were provided by a solver (initial AF plus modifications). In ICCMA’19,
there are 8 changes per file, so n = 8. The score for a correct and complete result was 1, as usual. A par-
tial (incomplete) result was considered correct if it gave fewer than n + 1 answers, but each of the given
answers was correct and complete (with respect to the corresponding static tasks). These rules applied to
all the problems (SE, DC, DS, EE) in the dynamic track. A correct but incomplete result scored a value
in (0, 1], depending on the fraction of correct sub-solutions returned. If the considered dynamic task
involved enumeration (i.e. EE) and the last solution a solver provided was correct but partial, then the
whole answer was evaluated as if the last problem instance was not solved at all, considering the answer
as partial and correct, and assigning a fraction of 1/n points, depending on the fraction of returned enu-
merated extensions. This exception does not penalize solvers that incrementally enumerate extensions;
otherwise, the last solution would globally count as incomplete if a timeout occurs during enumeration.
If any sub-solutions were incorrect, the overall output was considered incorrect (−5 points). Otherwise,
if no answer was given, 0 points were assigned (for instance, due to a timeout).

The ranking of solvers for a track was based on the sum of scores over all tasks of a considered track.
Ties were broken by the solver’s total time to return the correct results. Note that to ensure that each task
had the same impact on the evaluation of a track, all tasks for one semantics had the same number of
instances.

5.6. Scores and ranking at ICCMA’21

For the 2021 edition, the competition has been run on a computer cluster where each machine has an
Intel Xeon E5-2637 v4 CPU and 128GB of RAM. The runtime limit for each instance is 600 seconds
for the “exact” track and 60 seconds for the “approximate” track. The memory limit is the machine’s
memory, i.e. 128GB. Each sub-track has one ranking, i.e., six rankings for the “exact” track and six
rankings for the “approximate” track. To be ranked, a solver must participate in the full sub-track (with-
out obligation to participate in all the (sub)tracks). The scoring system is slightly different between both
tracks.

For the “exact” track, any wrong result on an instance i in a sub-track conducts to the exclusion of the
solver from the said sub-track. It does not prevent the solver from being ranked for other sub-tracks if
there are no wrong results for these other ones. Then, the score of a solver S on the instance i is

Score(S, i) =
{

1 the correct answer is given in the runtime limit

0 timeout or non-parsable output

On the contrary, wrong results do not lead to an exclusion in the “approximate” track:

Score(S, i) =
{

1 the correct answer is given in the runtime limit

0 wrong result, timeout or non-parsable output
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Then, the score of the solver S for the task T is

Score(S, T ) =
∑
i∈T

Score(S, i)

and the score for the sub-track ST is

Score(S,ST ) =
∑

T ∈ST
Score(S, T ).

When two solvers have the same score for a given sub-track, the cumulated runtime over the instances
correctly solved is used as a tie-break rule (the fastest is the best).

5.7. Reference solvers

In the ICCMA argumentation competitions, only a reference solver is usually used to check the results
correctness. For instance, solutions for all instances in ICCMA’15 were computed using Tweety [71,75],
a collection of libraries for logical aspects of artificial intelligence and knowledge representation, while
Aspartix-D was employed as the reference solver in ICCMA’17 [37,42]. No proof can be given that
ConArg has no errors, but 100% of the competition’s instances were solved by obtaining the same results
as the solvers able to solve such instances. In ICCMA’19, ConArg [18,21], was utilized as the reference
solver of the competition. The output of solvers was compared among themselves and with the output
produced by ConArg to ensure the correctness and completeness of the answers. Additionally, ConArg
was used to select benchmark instances, as mentioned in Section 5.3. ConArg (i.e., argumentation with
constraints) is a Constraint-programming tool developed by some of the authors of this paper, based on
Gecode,25 an efficient C++ toolkit for developing constraint-based systems and applications. ConArg
and Conarglib (its software-library version) are among the official projects supported by Gecode. The
two main goals of this tool are to i) to solve further problems linked to weighted problems [19], and
ii) to improve its performance over classical semantics, by using a benchmark assembled with random
graph-models [20].

In [29], the authors classify the ConArg approach among “reduction-based implementations”, where
first the problem is reduced to the target formalism (in this case, constraints), then a solver for that
formalism is executed and, finally, the obtained output is interpreted as solutions of the original prob-
lem. The search phase takes advantage of classical techniques in Constraint-programming, such as local
consistency, different heuristics for trying to assign values to variables, and complete search-tree with
branch-and-bound. Models in Gecode are implemented using spaces. A space is home to variables,
propagators (implementations of constraints), and branchers (implementations of branching, describing
the shape of the search tree).

To prevent any issues caused by instances that the reference solver could not solve, the organizers of
the ICCMA’19 competition aimed to avoid their usage. The authors of [69] proved that nearly 23% of
all AFs of ICCMA’17 could not be enumerated by any solver, and some participant in the competition
was erroneously scored positively for instances that no solver could solve. For this reason, one of the
criteria for selecting instances in ICCMA’19 was that they had to be solvable by the reference solver.
Since ConArg is not the best performance solver, it used 10 times the time and 10 times the memory

25http://www.gecode.org.

http://www.gecode.org
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space granted in the competition constraint to solve the problems. As shown in [69], ConArg solved
76.92% (20 out of 26) of the problems solved by only one solver in ICCMA’17, which, in our opinion,
guarantees to have not only easy instances.

Concerning the ICCMA’21 competition, a tool named RUBENS,26 developed by some authors of
this paper was used to perform initial checks on the submitted solvers. RUBENS is a library designed to
generate test cases automatically using translation rules. It comes with some pre-built test generators and
an interface allowing users to create new ones with minimal effort. The RUBENS checker then executes
the software to be tested on the generated test cases, and if the software produces an unexpected result,
an error message is thrown. Using this tool allowed us to discover some issues in two solvers, providing
the authors with few instances and allowing them to correct their solvers before the competition. A
reference solver was not taken into consideration for the exact track. Instead, the obtained results for
each instance were examined to identify any inconsistencies. This allowed us to discover that another
solver was incorrect for a sub-track. Unfortunately, this solver could not be fixed in time to participate
in the considered sub-track. The same methods could not be used for the approximate track due to the
incomplete nature of the algorithms. Therefore, the 2019 version of μ-toksia was considered a reference
solver, as described in Section 5.4. The correctness of the solvers in ICCMA’21 was ensured by taking
advantage of the work done by the organizers of the 2019 edition. For both complete and incomplete
ICCMA’21 tracks, the global results were aggregated by a dedicated tool, mETRICS.27

6. Results and analysis for ICCMA’19

The detailed results and ranking of solvers for all tracks can be found on the dedicated page of the
competition website.28 In Appendix B, we report some tables aggregating results per semantics. In the
global ranking for the static tracks, the solvers μ-toksia, CoQuiAAS, Aspartix, and Pyglaf reached the
first, second, third, and fourth positions, respectively. μ-toksia got the highest score for every single
track as well. As a reminder, μ-toksia, CoQuiAAS, and Pyglaf use a SAT-based implementation, while
Aspartix relies on an ASP solver. For the dynamic tracks, the first and second positions are still held by
μ-toksia, and CoQuiAAS, respectively. In this case, CoQuiAAS performed better than μ-toksia on the
complete and grounded tracks.

Figure 8 shows the time (on a logarithmic scale) taken to solve each non-dynamic instance that was
solved correctly by each solver;29 failed instances, for example, due to exceeding the memory limit or
timeout, are not shown. The results are again aggregated by semantics. We can see that Pyglaf is slightly
above the other lines in the case of “easy” instances (less than a second), while Yonas is visibly above
all, i.e. it takes significantly longer. The other solvers are very close to each other.

Figure 9 shows the same results this time considering dynamic tracks: CO-D and ST-D, thus aggre-
gated by semantics and with solution time on a logarithmic scale. In non-dynamic tracks, μ-toksia is
first, CoQuiAAS second, and Pyglaf third. We omit the detailed results for the sake of brevity and refer
the interested reader to the ICCMA’19 website for full results. The figures show that CoQuiAAS is faster
in the case of “easy” instances (less than one second), but the difference is a matter of some tenths of a

26https://github.com/crillab/rubens.
27https://github.com/crillab/metrics.
28ICCMA’19 results: https://iccma2019.dmi.unipg.it/results.html.
29For this and following figures in this section, more semantics are shown in C.

https://github.com/crillab/rubens
https://github.com/crillab/metrics
https://iccma2019.dmi.unipg.it/results.html
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Fig. 8. Time [s] taken for each correctly solved instance in the tracks for the semantics CO and SST – ICCMA’19.

second at most. μ-toksia and Pyglaf show similar performance in such instances. The difference is larger
for more difficult instances.

We also show the cumulative amount of time, expressed in seconds, taken to solve each instance
(among those correctly solved) of a track. Figure 10 displays the results for the classical tracks, while
Fig. 11 reports the results for the dynamic tracks. What emerges for the non-dynamic tracks is that
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Fig. 9. Time [s] taken for each correctly solved instance in the dynamic tracks for the semantics CO and SST – ICCMA’19.

Yonas takes longer than all the other solvers, whose performances are, in turn, more similar to each
other. Between the three solvers taking part in the dynamic track, μ-toksia and Pyglaf are remarkably
faster than CoQuiAAS concerning the overall time taken to correctly solve instances in the preferred
track. On the other hand, CoQuiAAS performs better than the other solvers for the stable and grounded
tracks.
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Fig. 10. Cumulative time [s] taken to correctly solve all instances in the CO and SST tracks – ICCMA’19.

The hardest instances in the classical tracks were n320p5q2_n.apx (DC-CO, EE-PR, DC-PR,
DC-ST), n256p3q08n.apx (EE-SST, EE-STG), in which three solvers timed out. Another hard instance
was n256p5q2_e.apx, where three solvers took more than 5 minutes to find a solution in 10 different
tracks. These three instances belong to the dataset in ICCMA19B2.
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Fig. 11. Cumulative time [s] taken to correctly solve all instances in the dynamic CO and SST tracks – ICCMA’19.

Concerning the dynamic tracks, in EE-CO with instances n256p3q08n.apx and n320p5q2_n.apx,
all three participants timed out. While previous instances were hard to solve for all the three partici-
pants also in other tasks, with the following instances, only CoQuiAAS timed out in at least a track:
A-2-stb_422_250.apx, B-3-WS_300_16_70_30.apx, B-3-stb_339_393.apx, B-3-stb_428_430.apx, C-2-
stb_304_352.apx, n160p3q24e.apx, A-2-WS_300_16_70_30.apx, B-3-stb_327_100.apx.
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6.1. Statistical significance of results

To determine whether the runtime differences of the solvers are significant, we conducted a Wilcoxon
signed-rank test [78], a non-parametric test for paired samples which compares the probability that a
random value from the first group is greater than its dependent value from the second group. In our case,
each group contains the execution time of a solver, given a particular task, against all instances solved
by both solvers. The results obtained are trustworthy since the following assumptions are fulfilled: i)
the dependent variable is continuous, ii) paired observations are randomly and independently drawn,
and iii) paired observations come from the same population. Upon comparison, the test generates a p-
value for each sample pair, and statistical significance is determined if the p-value falls below a certain
threshold, most commonly 0.05. Performing tests to compare the runtimes for all solvers participating
in ICCMA’17, 19, and 21 was not possible due to the different machine configurations on which the
performance of the solvers was computed, which results in execution times that are not directly com-
parable. Therefore, we conducted the test on participant solvers in the ICCMA’19 classic tracks.30 We
discuss below the results of tests.

For most of the results (354 out of 383 tests), we obtain p-value < 0.05. In other words, the difference
between the sample change and the expected change is big enough to be statistically significant. For the
remaining 29 solver pairs with p-value � 0.05, we cannot exclude the hypothesis that the difference be-
tween their runtimes follows a symmetric distribution around zero. This means that there is no evidence
of a statistically significant difference between the two distributions, and it cannot be concluded with
sufficient confidence that there is a dissimilarity between the performances of the two compared solvers.
Two solvers in particular, μ-toksia and Mace4-Prover9, frequently present high p-values when tested
with the other solvers.

Table 8 shows the results of the Wilcoxon signed-rank tests, conducted between Mace4-Prover9 and
other solvers, that presented a p-value � 0.05. Mace4-Prover9 performs closely to the solvers listed in
the table for the tasks it participates in. For instance, in the SE-CO task, Mace4-Prover9 and eqargsolver
are ranked sixth and seventh, respectively. It is worth noting that mu-toksia, the best overall solver
in ICCMA’19, never appears in Table 8, so its performance compared to Mace4-Prover9 cannot be
questioned.

Table 8

Wilcoxon signed-rank test results between Mace4-Prover9 and other ICCMA’19 classic track solvers, where p-value � 0.05

Task Solver_1 Solver_2 p-value
DC-CO Mace4-Prover9 Aspartix-V19 0.566
DC-CO Mace4-Prover9 EqArgSolver 0.570
DC-CO Mace4-Prover9 Pyglaf 0.112
DS-CO Mace4-Prover9 Aspartix-V19 0.363
DS-CO Mace4-Prover9 CoQuiAAS 0.874
DS-CO Mace4-Prover9 EqArgSolver 0.320
SE-CO Mace4-Prover9 Aspartix-V19 0.319
SE-CO Mace4-Prover9 CoQuiAAS 0.752
SE-CO Mace4-Prover9 EqArgSolver 0.780

30Wilcoxon signed-rank test results for ICCMA’19 classic tracks: https://iccma2019.dmi.unipg.it/wilcoxon/all_res_
wilcoxon.txt.

https://iccma2019.dmi.unipg.it/wilcoxon/all_res_wilcoxon.txt
https://iccma2019.dmi.unipg.it/wilcoxon/all_res_wilcoxon.txt
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Table 9

Wilcoxon signed-rank test results between Taas-dredd and other ICCMA’19 classic track solvers, where p-value � 0.05

DC-CO Taas-dredd EqArgSolver 0.358
DC-CO Taas-dredd μ-toksia 0.220
DC-PR Taas-dredd EqArgSolver 0.262
DC-PR Taas-dredd μ-toksia 0.192
DC-ST Taas-dredd CoQuiAAS 0.265
DC-ST Taas-dredd EqArgSolver 0.979
DS-PR Taas-dredd EqArgSolver 0.495
DS-PR Taas-dredd μ-toksia 0.608
DS-ST Taas-dredd Aspartix-V19 0.095
DS-ST Taas-dredd Pyglaf 0.222
EE-CO Taas-dredd Aspartix-V19 0.280
EE-CO Taas-dredd CoQuiAAS 0.568
EE-CO Taas-dredd μ-toksia 0.137
EE-PR Taas-dredd Aspartix-V19 0.666
EE-PR Taas-dredd CoQuiAAS 0.458
EE-ST Taas-dredd Pyglaf 0.179
SE-CO Taas-dredd μ-toksia 0.223
SE-PR Taas-dredd Pyglaf 0.983
SE-ST Taas-dredd Pyglaf 0.579

The findings in Table 9 suggest a statistically non-significant difference in performance between μ-
toksia and Taas-dredd, which, however, ranked first and last, respectively, for the tasks DC-CO, DC-PR,
DS-PR, EE-CO and SE-CO. It appears that Taas-dredd’s behaviour varies considerably depending on the
benchmark instances, possibly due to the quality of the heuristics used. Nevertheless, when compared
on average, Taas-dredd performs much worse than μ-toksia for all tasks and again, these results do not
undermine the validity of the rankings obtained.

6.2. Comparison with ICCMA’17 solvers

The first four solvers in ICCMA’17 were compared with the overall winner of ICCMA’19 to quantify
the improvements of solvers achieved in two years. The past solvers were also dockerized by asking the
participants of ICCMA’17 for those older versions (the participant himself dockerized Pyglaf).

Table 10 shows the scores for Argmat-sat, ArgSemSAT, CoQuiAAS’17, Pyglaf’17, and μ-toksia’19
on the ICCMA’19 benchmark instances. It can be noted that CoQuiAAS’17 has a negative score due
to his erroneous behaviour in some tasks of ICCMA’17. μ-toksia also ranks first among these solvers,
obtaining two points more than Pyglaf in 2017. Except for the EE and ST tracks, Argmat-sat performed
very well as well. μ-toksia shows better time performance for 20 out of 24 tasks compared to Argmat-sat,
while memory consumption is better for Argmat-sat in 15 out of 24 tracks. Only considering completed
problem instances, the total time for μ-toksia is 8.2% less than Argmat-sat, while the maximum memory
consumption is 112% more for Argmat-sat.31 B, Table 21 provides detailed results about Argmat-sat ’17,
Pyglaf ’17, and μ-toksia in terms of the total time taken to solve the instances in a task, and the maximum
memory consumption across all instances in a given task.

31This could mean that Argmast-sat performs better on larger instances due to possible memory exhaustion by μ-toksia.
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Table 10

Scores of the first four solvers from ICCMA’17 against the best performer of ICCMA’19: μ-toksia

Argmat-sat ’17 ArgSemSAT ’17 CoQuiAAS ’17 Pyglaf ’17 μ-toksia ’19
DC-CO 326 326 326 326 326
DC-GR 326 326 326 326 326
DC-ID 326 – 104 325 326
DC-PR 326 326 323 326 326
DC-SST 326 326 64 325 326
DC-ST 326 317 −550 326 326
DC-STG 326 – 69 326 326
DS-CO 326 326 326 326 326
DS-PR 326 326 266 326 326
DS-SST 326 326 −923 326 326
DS-ST 242 316 20 326 326
DS-STG 326 – −898 326 326
EE-CO 325 323 311 326 326
EE-PR 326 326 −352 326 326
EE-SST 326 325 −428 325 326
EE-ST 326 321 236 325 325
EE-STG 326 – −445 326 325
SE-CO 326 325 326 326 326
SE-GR 326 326 326 326 326
SE-ID 326 – −400 325 326
SE-PR 326 326 −390 326 326
SE-SST 326 326 −517 326 326
SE-ST 326 318 236 326 326
SE-STG 326 – −547 326 326

Total 7739 5831 −2191 7820 7822

6.3. Comparison between dynamic and non-dynamic solvers

Finally, the performance of dynamic versions of solvers was compared to the performance of their
static equivalents. The benchmark instances and eight modifications each were used for comparison (see
Section 5.3). Instances suitable for non-dynamic solvers were also generated by applying the modifica-
tions. This comparison considered the total time taken to solve each instance and its modifications for the
successfully solved instances, and it was performed for the three solvers submitted to dynamic tracks,
namely CoQuiAAS, μ-toksia, and Pyglaf. In Appendix B, Table 22 shows the performance differences
– the performance advantage of the dynamic solvers is evident.

On average, the dynamic versions of CoQuiAAS, μ-toksia, and Pyglaf improved their performance
over their non-dynamic versions by respectively 81.87%, 27.61%, and 86.54%. The difference between
μ-toksia and the other two solvers is probably because it already shows excellent performance in its
non-dynamic version, thus outlining a performance limit for both non-dynamic and dynamic tools. In C,
Fig. 26a, Fig. 26b and Fig. 26c report the sum of the times of successful instances considering a solver
and its dynamic version, respectively, CoQuiAAS, μ-toksia and Pyglaf. Figure 12 shows the percentage
improvement per task by considering the three different solvers.

We also show the differences in performance of CoQuiAAS, μ-toksia, Pyglaf, and their dynamic
version with respect to the single problem and the semantics. Figure 13 reports the sum of the times,
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Fig. 12. Percentage performance-improvement of a dynamic solver over its non-dynamic version. Values on the ordinate are
computed as 100 − (Tdynamic × 100 ÷ Tnon-dynamic), where T corresponds to the sum of all solved instances in each task. The
bars in the chart correspond to tasks in the legend, read in top-bottom firstly, left-right secondly direction.

aggregated by problem, of successful instances considering a solver and its dynamic version. In Ap-
pendix C, Figs 27a to 27c report the sum of the times, aggregated by semantics, of successful instances
considering a solver and its dynamic version.

7. Results and analysis for ICCMA’21

Now we describe the results of ICCMA’21. More specifically, we focus on the track dedicated to
exact algorithms in Section 7.1 and on the track dedicated to approximate algorithms in Section 7.2.
The detailed results (ranking and cumulated runtime) for each pair (problem, semantics) can be found
in [55].

7.1. Exact track

Compared to the previous edition, the main result of the competition is that there is no global winner
(μ-toksia, in 2019). Indeed, A-Folio-DPDB won two sub-tracks (CO and ST), PYGLAF won two sub-
tracks (PR, SST), ASPARTIX-V21 won one sub-track (STG) and FUDGE won one sub-track (ID). This
is a combination of new solvers (A-Folio-DBDP, FUDGE) and updated versions of solvers that already
participated in ICCMA (ASPARTIX and PYGLAF). While all these solvers use some reduction to SAT
or ASP in some cases, A-Folio-DPDB is the first ICCMA winner based on tree-width analysis of the
instances.

Figure 14 shows the runtime of solving each instance in the exact track for each solver participating
in the sub-tracks dedicated to the complete and semi-stable semantics (other semantics are plotted in
C). We observe that some groups of instance seem (in general) easier than some other ones. The data
is plotted such that instances are sorted in the lexicographical order. This means that the instances on
the left side correspond to some of the instances selected from ICCMA’19 (their benchmark names start
with A and B), while the instances at the center correspond mainly to the new instances generated for
ICCMA’21. This is in line with the intuition that the new instances should be hard for solvers that do not
consider the AFs’ structure. However, notice that the other instances selected from ICCMA’19 (on the
right side, with benchmark names starting with M, n, S, or T) are in some cases easy (e.g. Fig. 14a) and
in some cases hard, even harder than the new instances from ICCMA’21 (e.g. Fig. 14b).
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Fig. 13. The sum of the time (logarithmic scale) aggregated by the problem of successful instances for each track, considering
CoQuiAAS, μ-toksia, and Pyglaf, together with their dynamic versions. Times are reported in Table 22 in B.

On Fig. 15, which shows the cumulative runtime (in seconds) for the exact track (under the semantics
CO and SST – other semantics are provided in C), the observations are consistent with the rankings of
the competition. More precisely, well-ranked solvers solve more instances in less time, while the last-
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Fig. 14. Time [s] taken for each correctly solved instance in the exact track for the semantics CO and SST – ICCMA’21.

ranked solvers either fail to solve many instances or require much more time. Interestingly, some solvers
seem more efficient on “easy” instances but cannot solve more challenging ones. Consider, for instance,
μ-toksia (and its parallel version) for the semi-stable semantics (Fig. 15b), and compare it with Pyglaf.
μ-toksia’s accumulated runtime is much lower than Pyglaf’s, but the former has provided an answer for
much fewer instances (hence their final ranking).
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Fig. 15. Cumulative time [s] taken to correctly solve all instances in the exact track for the semantics CO and SST – ICCMA’21.

7.1.1. Comparison with ICCMA’19 best solver
Finally, we have compared μ-toksia (the winner from ICCMA’19) with the best solvers from IC-

CMA’21, i.e. the ones who performed best on any pair (problem, semantics). As can be seen from
Table 11, μ-toksia’19 globally performs better on the instances from ICCMA’21 than the competitors
of this edition (including the 2021 version of μ-toksia). One possible explanation for the different per-
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Table 11

Scores of the ICCMA’19 winner (μ-toksia) against the best solvers from ICCMA’21

μ-toksia’19 PYGLAF’21 FUDGE’21 A-Folio-DPDB’21 μ-toksia’21 ASPARTIX-V21
DC-CO 586 557 414 584 522 506
DC-PR 587 557 414 n/a 523 506
DC-ST 585 548 505 585 504 472
DC-SST 582 485 n/a n/a 481 210
DC-STG 569 149 n/a n/a 219 245
DS-CO 586 585 587 587 587 587
DS-ID 497 120 258 n/a 108 202
DS-PR 582 425 371 n/a 275 173
DS-ST 587 511 452 575 386 395
DS-SST 580 482 n/a n/a 230 212
DS-STG 578 164 n/a n/a 226 256
SE-CO 583 586 587 587 587 587
SE-ID 499 118 234 n/a 108 104
SE-PR 583 210 298 n/a 305 266
SE-ST 585 508 457 577 387 399
SE-SST 583 442 n/a n/a 285 215
SE-STG 583 504 n/a n/a 236 271

Total 9735/9979 6951/9979 4577/6457 3495/3522 5969/9979 5606/9979
Percentage 97.55 69.66 70.88 99.23 59.82 56.18

formance of the two versions of μ-toksia is the use of different SAT solvers in the implementation:
μ-toksia’19 include Glucose (version 4.1) [8] as the core SAT engine, while μ-toksia’21 exploit Cryp-
toMiniSat (version 5.8.0) [70].

We have only considered SE, DC and DS for this comparison, since μ-toksia (2019) does not support
CE. A possible way to solve CE with this version of the solver would have been to enumerate the
extensions (EE) and count their numbers ourselves. However, this would have induced an additional
runtime related to the input/output operations required to parse the set of extensions provided by μ-
toksia. For this reason, the comparison on CE would not have been fair.

The number of instances to be solved for each pair (problem, semantics) is the same (587). In all the
cases, μ-toksia’19 is close to 100% of solved instances, which means that even when another solver
outperforms it, the difference between them is small. On the contrary, in some cases, most other solvers
are far from 100% of solved instances. Only A-Folio-DPDB has a higher percentage of solved instances,
which is unsurprising since this particular solver is based on μ-toksia’19.

7.1.2. On parallel computing
For the first time at ICCMA’21, there was a submission of a solver relying on parallel computing.

Indeed, μ-toksia was submitted in two versions: one where there is only one SAT solver for computing
the extensions and one where four threads run in parallel various SAT solvers (or, more precisely, the
same SAT solver with different parameters). Only the single-threaded version was considered for the IC-
CMA ranking, but it is still interesting to discuss the performance of the multi-threaded solver (hereafter
named μ-toksia-parallel).

More precisely, for each sub-track, the score of μ-toksia-parallel is compared with the score of (the
single-threaded) μ-toksia and the score of the sub-track winner. These scores are summarised in Ta-
ble 12. In all the cases, μ-toksia-parallel outperforms the single-threaded version. Furthermore, in two
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Table 12

Relative performance of μ-toksia-parallel, μ-toksia, and the winner of each sub-track

Solver Score Solver Score Solver Score
(a) Complete Semantics (b) Preferred Semantics (c) Semi-stable Semantics

μ-toksia-parallel 1868 μ-toksia-parallel 1322 PYGLAF 1515
A-Folio DPDB 1838 PYGLAF 1299 μ-toksia-parallel 1216
μ-toksia 1803 μ-toksia 1210 μ-toksia 1103

(d) Stable Semantics (e) Stage Semantics (f) Ideal Semantics
A-Folio DPDB 1862 ASPARTIX-V21 879 FUDGE 492
μ-toksia-parallel 1737 μ-toksia-parallel 807 μ-toksia-parallel 465
μ-toksia 1441 μ-toksia 788 μ-toksia 216

Fig. 16. Time [s] taken for each correctly solved instance in the approximate track for the complete semantics – ICCMA’21.

cases (the complete and preferred semantics), it even outperforms the winner of the sub-track (namely
A-Folio DPDB for the complete semantics and PYGLAF for the preferred semantics).

7.2. Approximate track

For the track dedicated to approximate algorithms, HARPER++ won two sub-tracks (CO, ID), while
AFGCN won the other sub-tracks. However, an essential difference between both solvers is their run-
time: AFCGN is much slower than HARPER++ in all cases, as can be seen in Fig. 16 (runtime for
each instance, for the complete semantics) and Fig. 17 (cumulative runtime for the complete seman-
tics).32 This comes from the fact that HARPER++ mainly relies on the grounded extension, which can
be computed in linear time (in the number of arguments). The detailed results for each pair (problem,
semantics) are described in [55]: it shows that, in general, HARPER++ is more accurate for skeptical
reasoning (DS) while AFGCN is more accurate for credulous reasoning (DC).

32Figures for the other semantics are given in C.
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Fig. 17. Cumulative time [s] taken to correctly solve all instances in the approximate track for the complete semantics –
ICCMA’21.

8. Contributions of solvers to the state of the art

While the above results show the performance of each solver individually, they do not show how much
each solver contributed to the state of the art, as defined by all solvers. While an individual solver may
have the best overall performance, it may perform only marginally better than others, albeit consistently.
Conversely, a solver may not have outstanding performance across the entire set of instances but beat
every other solver on a small subset – without it, the state of the art would be significantly worse for
those instances.

The Shapley value was computed for each solver in each non-dynamic track to assess their contribu-
tions to the state of the art [41,50]. Briefly, the Shapley value is the average increase in performance
we see by adding the solver in question to any subset of the other solvers. It is a game theory concept
with various desirable properties that guarantee a fair credit allocation to each solver. Table 13 shows
the results for all solvers across all tracks for both years.

In 2019, μ-toksia, the overall best solver, ranks last regarding Shapley value. This indicates that while
it has great overall performance, there is no case where it is much better than all the other solvers –
it only slightly improves the ICCMA’19 state of the art. On the other hand, Taas-dredd, which ranks
last overall, is second in terms of Shapley value, just behind Pyglaf. While in many cases, it does not
perform well, there are cases where it performs much better than the other solvers, making a significant
contribution to the state of the art.

The ranking of solvers for the 2021 competition in terms of Shapley value closely follows the ranking
of individual performance when aggregated by sub-track. For the global results, the Shapley value is
correlated to both the solver’s individual performance and the number of tracks it participated in (for
instance, Pyglaf and μ-toksia have a higher value than A-Folio DPDB, which participated only in two
sub-tracks).

We see a similar picture for most of the individual tracks. These results reveal the recipe for a
competition-winning solver – achieve good performance across all instances with a tried-and-tested
approach rather than using a new heuristic that works well in only a few cases. They also show the value



S. Bistarelli et al. / The Third and Fourth ICCMA 39

Table 13

Shapley values of all solvers across all tracks and years in terms of score

Year/Track Algorithm Shapley Value
2019 Pyglaf 6652

Taas-dredd 6187
Argpref 3371
Mace4/Prover9 2726
Aspartix 1832
Yonas 1832
EqArgSolver 1517
CoQuiAAS 99.25
μ-toksia 1.014

2021/Approximate AFGCN 1378
HARPER++ 983.5

2021/Exact Pyglaf 1056
μ-toksia 667.5
μ-toksia-parallel 632.7
Aspartix 619.9
FUDGE 520.1
A-Folio DPDB 454.5
ConArg 0.4524
MatrixX 0

of the Shapley analysis – we can identify solvers that are much better than anything else on some parts
of the competition instances, allowing us to give credit to novel and very different approaches.

Finally, it is worth noting that the solvers in ICCMA’19, and especially ICCMA’21, have shown a
significant improvement in terms of correctness in comparison to the 2015 and 2017 editions, where
several participants provided incorrect answers.

9. Lessons learned

Organizing and running a competition requires a lot of effort and dedication. In this section, we give
some of our insights into what could be improved in the hope that it will be helpful for the organizers of
future competitions in AI.

9.1. ICCMA 2019

The requirement for all submitted solvers to use Docker in ICCMA’19 saved much work in setting
up solvers and ensuring they ran correctly. However, Docker containers cannot be run directly on most
HPC infrastructure because of Docker’s security deficiencies. To leverage our HPC infrastructure to
provide the large amount of computational resources required, the Docker containers were converted
to Singularity containers,33 which could be run without problems. The underlying virtualization is the
same, and the conversion is straightforward; for the purposes of this competition, Docker and Singularity
are equivalent.

33Singularity website: https://sylabs.io/singularity/.

https://sylabs.io/singularity/
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JSON inspires the standardized output format required for submitted solvers but does not entirely
conform to the JSON standard. Various pre-processing steps were implemented in ICCMA’19 that trans-
formed the output format into JSON and handled simple cases directly. While this allowed us to use a
standard JSON parser, the additional steps could have been avoided with simple modifications to the
output format. It can be recommended that competition organizers require standard formats as far as
possible to avoid implementing custom parsers.

As can be seen from the results of the competitions held in 2017 and 2019, the performance of par-
ticipants relying on SAT varies greatly depending on the implementation of the SAT solver itself. Con-
cerning solvers submitted to ICCMA’19, Argpref implements MiniSAT 2.2.0, a SAT-with-preferences
based approach [36], μ-toksia and Pyglaf are both dependant on the Boolean SAT solver Glucose (ver-
sion 4.1) [7,8], and Taas-dredd implements the DPLL-algorithm (Davis-Putnam-Logemann-Loveland)
backtracking algorithm for SAT solving [15, Chapter 3]. In ICCMA’21, Pyglaf is still based on Glu-
cose, FUDGE uses the SAT solver CaDiCaL 1.3.1,34 while, differently from the 2019 edition, μ-toksia
includes CryptoMiniSat (version 5.8.0) [70] as the underlying SAT solver.

Selecting the benchmarks to use could lead to errors in the evaluation phase. As shown in [69], 23%
of AFs from ICCMA’17 could not be enumerated by any solver. To avoid potential issues, ICCMA’19
instances were limited to those solvable by ConArg, the reference solver. Indeed, the reference solver
had a different time and memory limitation than the participant in the competition; ConArg was given
10 times the time and memory space used in the competition to solve problems. So, despite Conarg not
having the best time and memory performance of other solvers, the benchmarks also included difficult
(enough) instances. Indeed, ConArg is developed and maintained by some of the ICCMA’19 organizers,
hence the decision to use it as a reference solver.

9.2. ICCMA 2021

The organizers of the 2021 edition appreciated the use of Docker in ICCMA’19. However, a part
of the community did not receive it well. Furthermore, some technical difficulties were encountered,
which prevented the organizers from using Docker again for ICCMA 2021. As a result, various issues
arose when setting up the competition environment, such as ensuring that all the submitted solvers were
correctly compiling or running.

The exceptional results of μ-toksia 2019 (even when compared to more recent solvers submitted to
ICCMA 2021) may give the impression that choosing the “best” SAT solver is enough to solve all the
argumentation problems. However, experimental evaluations [43,46] have shown that no SAT solver is
strictly dominating the other ones for solving argumentation tasks, but each solver has its own strengths
and weaknesses, depending on the problem to be solved, the semantics, and the instance. An exact
characterization of which SAT solver is the best for each of these combinations is still an open question.

Moreover, beyond the SAT-based approaches, other approaches have been studied in the literature
(e.g., based on graph decomposition [57] or backdoors [33]). These approaches seem promising but
were mainly absent from ICCMA. However, let us notice that the success of A-FOLIO-DPDB for the
counting task (using a technique based on the graph treewidth) confirms the interest of such approaches.
So, we believe that one of the main challenges for the near future of the ICCMA competition is to
provide challenging benchmarks that could not be solved by “simply” plugging a SAT solver but would
require a more fine-grained analysis of the graph properties like those mentioned here. We have started
this effort with our community-based benchmark generation approach.

34CaDiCaL documentation: https://fmv.jku.at/cadical/.

https://fmv.jku.at/cadical/


S. Bistarelli et al. / The Third and Fourth ICCMA 41

We envision two last directions for improving the competition. Regarding the main track, it seems
important to be able to guarantee the results of the solvers, e.g., providing not only a YES/NO answer to
decision problems but also completing them with a certificate. This effort has been started by the recent
ICCMA 2023, which requires a certificate with positive answers for credulous acceptability and negative
answers for skeptical acceptability. Finding certificates for other cases is a challenge, but inspiration
could be taken from other communities (e.g. in SAT competitions, UNSAT instances are certified as
well35).

Finally, regarding the approximate track, various important questions should be investigated, like the
possibility of giving guarantees about the proximity between the correct result and the answer provided
by the algorithms or approximate algorithms for computing one extension or the set of (skeptically or
credulously) accepted arguments.

10. Conclusion

This paper described the 2019 and 2021 editions of the International Competition on Computational
Models of Argumentation. In particular, we have outlined the submitted solvers, benchmarks, ranking
design, and results obtained by solvers. To evaluate the improvement of solvers over time, we have
also compared the top 2019 solvers with the ones that participated in ICCMA’17, and similarly for the
best solvers of 2021 with the winner of ICCMA’19. The top solver in 2019, i.e., μ-toksia, shows better
performance when compared by using the same ranking criteria with respect to solvers in ICCMA’17;
this can also be appreciated in terms of the total time taken to solve instances, which is often less than
2017 solvers, while memory consumption is often higher – there is a clear improvement in state of the
art between the two competitions. Notably, μ-toksia’19 also outperforms the solvers from ICCMA’21,
including the updated version of μ-toksia that participated in ICCMA’21. We further compared the
performance of dynamic solvers to their non-dynamic counterparts in ICCMA’19. The performance
improvement is quite significant, suggesting that dynamic solvers should be used whenever possible,
for example, to compute semantics frequently during the evolution of debates. The competition results
are easily reproducible, as all submitted solvers are publicly available in Docker containers. Finally, we
described the results of the track dedicated to approximate algorithms newly introduced at ICCMA’21.
We showed that both approaches participating in this track offer interesting results regarding accuracy
and runtime.

Several changes were implemented between ICCMA’19 and ICCMA’21 to enhance the competition’s
significance and meet community expectations. The organizers of ICCMA’21 decided not to utilize
Docker as a platform for standardizing solver execution due to technical challenges and reservations
from part of the community. Moreover, the absence of participants in the dynamic track led to its removal
in ICCMA’21, where an approximate track replaced it. As for individual tasks, ICCMA’21 replaced the
enumeration of grounded extensions (which is not a difficult challenge) with a counting task. Finally,
contrary to what happened in ICCMA’19, where the organizers used ConArg as a reference solver to
evaluate the correctness of the participants, the results of each solver in the exact track of ICCMA’21
were checked for inconsistencies against all the other participants.

ICCMA provides an opportunity to advance research in computational argumentation by fostering the
development of efficient solvers capable of addressing real-world problems. The competition’s bench-
marks comprise large frameworks that are not typically representative of real-life scenarios involving

35See https://satcompetition.github.io/2023/certificates.html.

https://satcompetition.github.io/2023/certificates.html
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conflicting information, which can usually be modeled through smaller graphs. Therefore, other crucial
factors should also be considered, such as the ability to generalize and ease of use for non-expert end-
users. The best solver to use might not be the fastest one, but instead, the solver that comes with APIs
for several programming languages, web interfaces, and easy-to-follow manuals or guides. In future
competitions, having a criterion that considers these usability parameters would be beneficial. On the
other hand, there exist particular applications of argumentation theory (for instance, to produce/enhance
explanations for neural networks [9,65]) in which the input data reaches a significant size. In this case,
a separate consideration must be made as the solvers’ performance will still play a fundamental role in
addressing related problems. In future competitions, it would be interesting to use neural networks as
benchmarks to test the behavior of solvers.
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Appendix A. Benchmark selection

Benchmark selection for ICCMA 2019. We report the number of frameworks we selected from each
sub-benchmark to assemble the benchmark of ICCMA’19. A1 to T4 are benchmarks also used in IC-
CMA’17 (we point the interested reader to the website of ICCMA’17), while S, M (ICCMA19B1), and
N (ICCMA19B2) are the two new benchmarks described in Section 5.3: A1 (28), A2 (20), A3 (14), A4
(4), B1 (21), B2 (12), B3 (16), B4 (1), C1 (22), C2 (6), C3 (1), T1 (26), T2 (15), T3 (16), T4(5), S (105),
M (7), N (10).

Benchmark selection for ICCMA 2021. Now we report the number of instances selected from each
dataset for ICCMA’21. Regarding the instances from ICCMA’19, recall that A1 to T4 are actually the
benchmarks from ICCMA’17, while S and M are the datasets from ICCMA19B1, and N comes from
ICCMA19B2: A1 (2), A2 (10), A3 (13), A4 (4), B1 (1), B2 (10), B3 (16), B4 (1), C1 (5), C2 (6), C3 (1),
T2 (8), T3 (13), T4 (5), S (1), M (7), N (4).

Appendix B. Detailed results

Results for ICCMA 2019. Tables 14 to 20 show the aggregated results of solvers by each different
semantics (CO, PR, ST, SST, STG, GR and ID): for example SE, SE, DC and DS tasks related to
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Table 14

Results of the CO track, aggregating EE, SE, DC, and DS tasks – ICCMA’19

Solver #Corr #Cra #Inc #Fail #Inv #TO #OOM Time Memory Score
Aspartix 1304 0 0 0 0 0 0 2873.198 94019584 1304
CoQuiAAS 1302 0 0 0 0 2 0 5060.037 969428992 1302
EqArgSolver 1166 0 0 0 0 138 0 97244.536 474550272 1166
μ-toksia 1304 0 0 0 0 0 0 1309.272 90816512 1304
Pyglaf 1304 0 0 0 0 0 0 4660.723 50774016 1304
Taas-dredd 987 10 203 0 0 104 0 77462.209 99794944 −163.190
Yonas 1200 0 0 0 0 86 18 238724.722 9999351808 1035.829

Table 15

Results of the PR track, aggregating all the tasks – ICCMA’19

Solver #Corr #Cra #Inc #Fail #Inv #TO #OOM Time Memory Score
Aspartix 1299 0 5 0 0 0 0 4346.610 92950528 1274
CoQuiAAS 1301 0 0 0 0 3 0 6601.919 93622272 1301
EqArgSolver 1166 0 0 0 0 138 0 96887.766 3063808 1166
μ-toksia 1304 0 0 0 0 0 0 1405.415 89145344 1304
Pyglaf 1257 0 47 0 0 0 0 5656.699 82247680 1022
Taas-dredd 863 15 236 0 0 190 0 143690.076 99987456 −436.032
Yonas 1009 177 1 0 0 94 23 363580.659 9979367424 836.678

Table 16

Results of the ST track, aggregating all the tasks – ICCMA’19

Solver #Corr #Cra #Inc #Fail #Inv #TO #OOM Time Memory Score
Aspartix 1304 0 0 0 0 0 0 2111.697 86528000 1304
CoQuiAAS 1303 0 0 1 0 0 0 1978.757 65941504 1303
EqArgSolver 1160 0 0 0 0 144 0 100895.672 3059712 1160
μ-toksia 1304 0 0 0 0 0 0 999.592 78954496 1304
Pyglaf 1304 0 0 0 0 0 0 4863.809 98836480 1304
Taas-dredd 791 13 278 0 0 222 0 170496.572 99676160 -718.032
Yonas 915 185 12 0 1 163 28 411195.085 9995333632 700.669

Table 17

Results of the SST track, aggregating all the tasks – ICCMA’19

Solver #Corr #Cra #Inc #Fail #Inv #TO #OOM Time Memory Score
Aspartix 1138 21 139 0 5 1 0 4868.853 59879424 428.699
CoQuiAAS 1298 0 0 1 0 5 0 8137.338 94203904 1298
μ-toksia 1303 0 0 0 0 1 0 3226.112 88989696 1303
Pyglaf 1303 0 0 0 0 1 0 6317.506 92397568 1303

Table 18

Results of the STG track, aggregating all the tasks – ICCMA’19

Solver #Corr #Cra #Inc #Fail #Inv #TO #OOM Time Memory Score
Aspartix 1215 24 65 0 0 0 0 3841.746 87470080 882.219
CoQuiAAS 1289 0 0 1 0 14 0 15855.341 99647488 1289
μ-toksia 1303 0 0 0 0 1 0 3191.954 75272192 1303
Pyglaf 1300 0 2 0 0 2 0 7479.289 95862784 1290
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Table 19

Results of the GR track, aggregating all the tasks – ICCMA’19

Solver #Corr #Cra #Inc #Fail #Inv #TO #OOM Time Memory Score
Aspartix 652 0 0 0 0 0 0 930.546 3080192 652
CoQuiAAS 652 0 0 0 0 0 0 434.905 3055616 652
EqArgSolver 652 0 0 0 0 0 0 256.632 3059712 652
μ-toksia 652 0 0 0 0 0 0 238.776 3059712 652
Pyglaf 360 0 292 0 0 0 0 1900.577 409772032 −1100
Taas-dredd 502 0 150 0 0 0 0 218.212 3059712 −248
Yonas 652 0 0 0 0 0 0 5736.522 3055616 652

Table 20

Results of the ID track, aggregating all the tasks – ICCMA’19

Solver #Corr #Cra #Inc #Fail #Inv #TO #OOM Time Memory Score
Argpref 652 0 0 0 0 0 0 4241.309 46161920 652
Aspartix 648 0 1 0 0 3 0 5232.252 82718720 643
CoQuiAAS 651 0 0 0 0 1 0 3615.624 86106112 651
μ-toksia 652 0 0 0 0 0 0 1594.610 93822976 652
Pyglaf 650 0 0 0 0 2 0 8133.248 82640896 650

the complete semantics are aggregated in Table 14. The columns Solver, #Corr, #Cra, #Inc, #Fail, #Inv,
#TO, #OOM, Time, Memory, and Score correspond to: the name of the solver, the number of correct
answers, number of crashes, number of incorrect answers, number of failures, number of invalid answers,
number of timeouts, number of out-of-memory, running time (total, seconds), used memory (max) and
final score, respectively. In detail, #Cra refers to the number of times the solver crashed due to memory
issues, #Fail corresponds to all those runs that did not produce an answer (e.g. because of timeouts),
#Inc refers to syntactically correct but wrong answers, and #Inv is the number of syntactically incorrect
answers.

Table 21 provides detailed results about Argmat-sat ’17, Pyglaf ’17, and μ-toksia in terms of the total
time to solve the instances in a task and the maximum memory consumption across all instances in a
given task.

From Table 22 we extracted Fig. 12: it shows the performance improvement between ICCMA’19
dynamic-solvers and their non-dynamic version.

Results for ICCMA 2021. We show the results aggregated for each sub-track (i.e. each semantics).
Detailed results for each task (CE, SE, DS, DC) are described in [55].
Exact Track. Table 23 to 28 show, respectively, the results for the complete, preferred, semi-stable, sta-
ble, stage and ideal semantics for the exact track. The score of the solvers at the competition corresponds
to the number of correctly solved instances within the time limit (#CORR). Only Table 27 contains a
column #Inc, since CE-STG is the only task with incorrect results.

PYGLAF was removed from the STG sub-track ranking because of wrong results on CE-STG. In
Table 27, we give all the results for the STG sub-track, including the information about PYGLAF, with
the details on the number of incorrectly solved instances.
Approximate Track. Table 29 to 34 show, respectively, the results for the complete, preferred, semi-
stable, stable, stage and ideal semantics.
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Table 21

The total time to solve instances in a track (T), and the max memory-consumption (M) recorded among all the tested instances,
comparing Pyglaf’17, Argsemsat ’17, and μ-toksia. In bold, we highlighted the best performance for each track

Argmat-sat ’17 (T) Pyglaf ’17 (T) μ-toksia (T) Argmat-sat ’17 (M) Pyglaf ’17 (M) μ-toksia ’19 (M)
DC-CO 247.606 868.639 144.566 2744320 101429248 3059712
DC-GR 186.649 816.788 118.020 2748416 408502272 3059712
DC-ID 1219.777 3689.534 779.923 359321600 408530944 93822976
DC-PR 224.471 909.690 143.485 2748416 101511168 3059712
DC-SST 646.953 1176.023 382.811 63500288 410750976 61640704
DC-ST 198.537 936.490 134.863 2748416 103944192 3059712
DC-STG 677.609 1129.134 304.506 220917760 320135168 3059712
DS-CO 289.909 824.397 119.092 2748416 407949312 3059712
DS-PR 329.712 1291.082 260.691 2744320 408477696 3055616
DS-SST 350.531 820.685 439.937 41095168 410763264 71610368
DS-ST 228.015 982.555 197.775 2748416 407928832 3059712
DS-STG 439.977 465.708 398.004 24285184 298020864 50610176
EE-CO 1234.672 1699.336 926.960 58286080 408096768 90816512
EE-PR 1140.984 1793.324 782.133 335994880 408428544 89145344
EE-SST 694.502 1343.793 2050.861 62275584 410533888 88989696
EE-ST 1225.934 1340.969 483.222 64880640 408113152 78954496
EE-STG 708.887 1237.260 2213.428 217391104 319905792 75272192
SE-CO 186.475 837.489 118.654 2748416 408133632 3055616
SE-GR 188.254 831.678 120.756 2744320 408457216 3055616
SE-ID 1212.473 4094.385 814.687 359583744 409243648 93466624
SE-PR 290.008 1774.713 219.106 2748416 408219648 3059712
SE-SST 334.826 1050.739 352.503 40849408 410308608 62005248
SE-ST 256.407 938.164 183.732 2752512 408113152 3059712
SE-STG 433.657 605.012 276.016 24702976 319684608 3059712

Table 22

For each task in ICCMA’19, the sum of the times using the dynamic version of a solver (D) and the non-dynamic solver on the
same instances

CoQuiAAS D CoQuiAAS μ-toksia D μ-toksia Pyglaf D Pyglaf
EE-CO 11245.699 57452.466 4014.1 7614.729 4091.292 14305.657
EE-PR 11016.949 51246.702 3840.326 6852.05 4005.905 16698.682
EE-ST 2978.907 33066.517 3041.083 4592.005 3118.97 13687.683
SE-CO 415.898 22150.552 991.753 1047.821 957.432 9382.833
SE-GR 220.476 16073.153 939.169 1047.905 971.831 9340.286
SE-PR 7990.63 46583.326 1128.106 2094.996 1118.985 16863.551
SE-ST 1392.604 21310.391 1103.307 1692.002 1125.505 10655.019
DC-CO 556.403 3263.978 998.394 1264.71 1016.12 9614.515
DC-GR 218.591 1944.182 955.222 1056.546 972.122 9395.487
DC-PR 552.116 3215.875 976.361 1263.765 1002.714 9319.65
DC-ST 322.382 2048.395 1056.926 1200.064 1064.172 10090.488
DS-CO 416.792 2912.148 945.012 1057.074 976.008 9437.691
DS-PR 5563.113 8859.674 1066.52 2218.847 1091.149 9354.401
DS-ST 1479.013 3841.023 1081.253 1718.16 1185.033 10822.633
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Table 23

Results of the exact CO track, aggregating all the tasks – ICCMA’21

Rank Solver #TO #OOM #Corr Time
1 A-Folio DPDB 356 154 1838 256865.269137
2 PYGLAF 506 7 1835 471672.364965
3 μ-toksia 545 0 1803 366929.58568
4 ASPARTIX-V21 561 0 1787 457280.325126
5 FUDGE 653 0 1695 417615.509689
6 MatrixX 1589 0 759 746642.199855
7 ConArg 1920 0 428 806693.680245

Table 24

Results of the exact PR track, aggregating all the tasks – ICCMA’21

Rank Solver #TO #OOM #Corr Time
1 PYGLAF 1049 0 1299 763331.549189
2 μ-toksia 1130 8 1210 781100.071756
3 FUDGE 1158 0 1190 778747.086111
4 ASPARTIX-V21 1296 0 1052 893080.384484
5 ConArg 1919 0 429 1078990.372535

Table 25

Results of the exact SST track, aggregating all the tasks – ICCMA’21

Rank Solver #TO #OOM #Corr Time
1 PYGLAF 675 158 1515 608878.736437
2 μ-toksia 1242 3 1103 837705.709219
3 ASPARTIX-V21 1604 0 744 1030815.676415
4 ConArg 1920 0 428 799122.13297

Table 26

Results of the exact ST track, aggregating all the tasks – ICCMA ’21

Rank Solver #TO #OOM #Corr Time
1 A-Folio-DPDB 403 83 1862 399310.875341
2 PYGLAF 605 0 1743 584282.048277
3 FUDGE 763 0 1585 628810.979216
4 μ-toksia 902 4 1441 693282.745979
5 ASPARTIX-V21 919 0 1429 713113.490005
6 ConArg 1919 0 429 569940.064742
7 MatrixX 2089 0 259 988008.858822

Table 27

Results of the exact STG track, aggregating all the tasks – ICCMA’21

Rank Solver #Inc #TO #OOM #Corr Time
n/a PYGLAF 40 1078 0 1230 788942.719787
1 ASPARTIX-V21 0 1469 0 879 980538.66247
2 μ-toksia 0 1556 4 788 1006700.226719
3 ConArg 0 1923 0 425 321370.304013
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Table 28

Results of the exact ID track, aggregating all the tasks – ICCMA’21

Rank Solver #TO #OOM #Corr Time
1 FUDGE 682 0 492 464947.160094
2 ASPARTIX-V21 868 0 306 543003.026772
3 PYGLAF 936 0 238 581959.560274
4 μ-toksia 952 6 216 574761.838951
5 ConArg 960 0 214 601182.943059

Table 29

Results of the approximate CO track, aggregating all the tasks – ICCMA’21

Rank Solver #Inc #TO #OOM #Corr Time
1 HARPER++ 366 0 0 747 1635.459946
2 AFGCN 84 361 0 668 34155.56654

Table 30

Results of the approximate PR track, aggregating all the tasks – ICCMA’21

Rank Solver #Inc #TO #OOM #Corr Time
1 AFGCN 90 150 0 567 18392.00973
2 HARPER++ 369 0 0 438 742.960579

Table 31

Results of the approximate SST track, aggregating all the tasks – ICCMA’21

Rank Solver #Inc #TO #OOM #Corr Time
1 AFGCN 64 135 0 522 15762.23359
2 HARPER++ 370 0 0 351 671.55106

Table 32

Results of the approximate ST track, aggregating all the tasks – ICCMA’21

Rank Solver #Inc #TO #OOM #Corr Time
1 AFGCN 120 198 0 637 23900.77196
2 HARPER++ 454 0 0 457 932.037855

Table 33

Results of the approximate STG track, aggregating all the tasks – ICCMA’21

Rank Solver #Inc #TO #OOM #Corr Time
1 AFGCN 71 0 0 392 4530.34336
2 HARPER++ 114 0 0 349 98.217632

Table 34

Results of the approximate ID track, aggregating all the tasks – ICCMA’21

Rank Solver #Inc #TO #OOM #Corr Time
1 HARPER++ 2 0 0 108 9.848397
2 AFGCN 2 0 0 108 470.655630
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Appendix C. Additional figures

C.1. ICCMA’19

Fig. 18. Time [s] taken for each correctly solved instance in the classical and dynamic track – ICCMA’19.
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Fig. 19. Time [s] taken for each correctly solved instance in the classical and dynamic track – ICCMA’19 (cont.).
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Fig. 20. Time [s] taken for each correctly solved instance in the classical and dynamic tracks – ICCMA’19 (cont.).
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Fig. 21. Time [s] taken for each correctly solved instance in the classical and dynamic tracks – ICCMA’19 (cont.).

Fig. 22. Cumulative time [s] taken to solve all instances in the classical and dynamic tracks correctly – ICCMA’19.
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Fig. 23. Cumulative time [s] taken to correctly solve all instances in the classical and dynamic tracks – ICCMA’19 (cont.).
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Fig. 24. Cumulative time [s] taken to correctly solve all instances in the classical and dynamic tracks – ICCMA’19 (cont.).
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Fig. 25. Cumulative time [s] taken to correctly solve all instances in the classical and dynamic tracks – ICCMA’19 (cont.).
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Fig. 26. The sum of the time (logarithmic scale) of successful instances for each track, considering CoQuiAAS, μ-toksia, and
Pyglaf, together with their dynamic versions. The bars in the chart correspond to tasks in the legend, read in top-bottom firstly,
left-right secondly direction. Times are reported in Table 22 in B – ICCMA’19.
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Fig. 27. The sum of the time (logarithmic scale) aggregated by semantics of successful instances for each track, considering
CoQuiAAS, μ-toksia and Pyglaf, together with their dynamic versions. Times are reported in Table 22 in B – ICCMA’19.
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C.2. ICCMA’21

Fig. 28. Time [s] taken for each correctly solved instance in the exact track – ICCMA’21.
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Fig. 29. Time [s] taken for each correctly solved instance in the exact track – ICCMA’21 (cont.).
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Fig. 30. Time [s] taken for each correctly solved instance in the exact track – ICCMA’21 (cont.).
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Fig. 31. Cumulative time [s] taken to solve all instances in the exact track correctly – ICCMA’21.
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Fig. 32. Cumulative time [s] taken to solve all instances in the exact track correctly – ICCMA’21 (cont.).
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Fig. 33. Cumulative time [s] taken to solve all instances in the exact track correctly – ICCMA’21 (cont.).



S. Bistarelli et al. / The Third and Fourth ICCMA 63

Fig. 34. Time [s] taken for each correctly solved instance in the approximate track – ICCMA’21.
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Fig. 35. Time [s] taken for each correctly solved instance in the approximate track – ICCMA’21 (cont.).
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Fig. 36. Time [s] taken for each correctly solved instance in the approximate track – ICCMA’21 (cont.).
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Fig. 37. Cumulative time [s] taken to solve all instances in the approximate track correctly – ICCMA’21.
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Fig. 38. Cumulative time [s] taken to correctly solve all instances in the approximate track – ICCMA’21 (cont.).
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Fig. 39. Cumulative time [s] taken to solve all instances in the approximate track correctly – ICCMA’21 (cont.).
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